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Start Here

When I was fourteen years old, I started a notebook. A math
notebook. Before you write me off as a sad case, I hasten to
add that it wasn’t a notebook of school math. It was a note-
book of every interesting thing I could find out about the
math that wasn’t taught at school. Which, I discovered, was
a lot, because I soon had to buy another notebook.

OK, now you can write me off. But before you do, have
you spotted the messages in this sad little tale? The math
you did at school is not all of it. Better still: the math you
didn’t do at school is interesting. In fact, a lot of it is fun—es-
pecially when you don’t have to pass a test or get the sums
right.

My notebook grew to a set of six, which I still have, and
then spilled over into a filing cabinet when I discovered
the virtues of the photocopier. Curiosities is a sample from
my cabinet, a miscellany of intriguing mathematical
games, puzzles, stories, and factoids. Most items stand by
themselves, so you can dip in at almost any point. A few
form short mini-series. I incline to the view that a miscel-
lany should be miscellaneous, and this one is.

...



The games and puzzles include some old favorites, which
tend to reappear from time to time and often cause renewed
excitement when they do—the car and the goats, and the
12-ball weighing puzzle, both caused a huge stir in the me-
dia: one in the USA, the other in the UK. A lot of the material
is new, specially designed for this book. I’ve striven for vari-
ety, so there are logic puzzles, geometric puzzles, numerical
puzzles, probability puzzles, odd items of mathematical cul-
ture, things to do, and things to make.

One of the virtues of knowing a bit of math is that you
can impress the hell out of your friends. (Be modest about
it, though, that’s my advice. You can also annoy the hell
out of your friends.) A good way to achieve this desirable
goal is to be up to speed on the latest buzzwords. So I’ve
scattered some short “essays” here and there, written in an
informal, nontechnical style. The essays explain some of
the recent breakthroughs that have featured prominently
in the media. Things like Fermat’s Last Theorem—remem-
ber the TV program? And the Four-Color Theorem, the
Poincaré Conjecture, Chaos Theory, Fractals, Complexity
Science, Penrose Patterns. Oh, and there are also some un-
solved questions, just to show that math isn’t all done.
Some are recreational, some serious—like the P = NP? prob-
lem, for which a million-dollar prize is on offer. You may
not have heard of the problem, but you need to know
about the prize.

Shorter, snappy sections reveal interesting facts and dis-
coveries about familiar but fascinating topics: π, prime
numbers, Pythagoras’ Theorem, permutations, tilings.
Amusing anecdotes about famous mathematicians add a
historical dimension and give us all a chance to chuckle
sympathetically at their endearing foibles …

Now, I did say you could dip in anywhere—and you can,
believe me—but to be brutally honest, it’s probably better
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to start at the beginning and dip in following much the
same order as the pages. A few of the early items help with
later ones, you see. And the early ones tend to be a bit eas-
ier, while some of the later ones are, well, a bit … challeng-
ing. I’ve made sure that a lot of easy stuff is mixed in
everywhere, though, to avoid wearing your brain out too
quickly.

What I’m trying to do is to excite your imagination by
showing you lots of amusing and intriguing pieces of
mathematics. I want you to have fun, but I’d also be over-
joyed if Curiosities encouraged you to engage with mathe-
matics, experience the thrill of discovery, and keep yourself
informed about important developments—be they from
four thousand years ago, last week—or tomorrow.

Ian Stewart
Coventry, January 2008
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Alien Encounter

The starship Indefensible was in orbit around the planet

Noncomposmentis, and Captain Quirk and Mr Crock had

beamed down to the surface.

‘According to the Good Galaxy Guide, there are two species of

intelligent aliens on this planet,’ said Quirk.

‘Correct, Captain – Veracitors and Gibberish. They all speak

Galaxic, and they can be distinguished by how they answer

questions. The Veracitors always reply truthfully, and the

Gibberish always lie.’

‘But physically—’

‘—they are indistinguishable, Captain.’

Quirk heard a sound, and turned to find three aliens creeping

up on them. They looked identical.

‘Welcome to Noncomposmentis,’ said one of the aliens.

‘I thank you. My name is Quirk. Now, you are . . . ’ Quirk

paused. ‘No point in asking their names,’ he muttered. ‘For all we

know, they’ll be wrong.’

‘That is logical, Captain,’ said Crock.

‘Because we are poor speakers of Galaxic,’ Quirk improvised,

‘I hope you will not mind if I call you Alfy, Betty and Gemma.’ As

he spoke, he pointed to each of them in turn. Then he turned to

Crock and whispered, ‘Not that we know what sex they are,

either.’

‘They are all hermandrofemigynes,’ said Crock.

‘Whatever. Now, Alfy: to which species does Betty belong?’

‘Gibberish.’

‘Ah. Betty: do Alfy and Gemma belong to different species?’

‘No.’

‘Right . . . Talkative lot, aren’t they? Um . . . Gemma: to

which species does Betty belong?’

‘Veracitor.’

Quirk nodded knowledgeably. ‘Right, that’s settled it, then!’

‘Settled what, Captain?’

‘Which species each belongs to.’
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‘I see. And those species are—?’

‘Haven’t the foggiest idea, Crock. You’re the one who’s

supposed to be logical!’

Answer on page 252...........................................
Tap-an-Animal

This is a great mathematical party trick for children. They take

turns to choose an animal. Then they spell out its name while

you, or another child, tap successive points of the ten-pointed

star. You must start at the point labelled ‘Rhinoceros’, and move

in a clockwise direction along the lines. Miraculously, as they say

the final letter, you tap the correct animal.

Spell the name
to find the
animal.

How does it work? Well, the third word along the star is ‘Cat’,

which has three letters, the fourth is ‘Lion’, with four, and so on.

To help conceal the trick, the animals in positions 0, 1 and 2

have 10, 11 and 12 letters. Since 10 taps takes you back to where

you started, everything works out perfectly.

To conceal the trick, use pictures of the animals – in the

diagram I’ve used their names for clarity............................................

Tap-an-Animal // 5



Curious Calculations

Your calculator can do tricks.

(1) Try these multiplications. What do you notice?

161

11611

1116111

111161111

11;111611;111

Does the pattern continue if you use longer strings of 1’s?

(2) Enter the number

142;857

(preferably into the memory) and multiply it by 2, 3, 4, 5, 6 and

7. What do you notice?

Answers on page 252...........................................
Triangle of Cards

I have 15 cards, numbered consecutively from 1 to 15. I want to

lay them out in a triangle. I’ve put numbers on the top three for

later reference:

Triangle of cards.

However, I don’t want any old arrangement. I want each card

to be the difference between the two cards immediately below it,
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to left and right. For example, 5 is the difference between 4 and

9. (The differences are always calculated so that they are

positive.) This condition does not apply to the cards in the

bottom row, you appreciate.

The top three cards are already in place – and correct. Can

you find how to place the remaining twelve cards?

Mathematicians have found ‘difference triangles’ like this

with two, three or four rows of cards, bearing consecutive whole

numbers starting from 1. It has been proved that no difference

triangle can have six or more rows.

Answer on page 253...........................................
Pop-up Dodecahedron

The dodecahedron is a solid made from twelve pentagons, and is

one of the five regular solids (page 174).

Three stages in making a pop-up dodecahedron.

Cut out two identical copies of the left-hand diagram – 10 cm

across – from thickish card. Crease heavily along the joins so that

the five pentagonal flaps are nice and floppy. Place one copy on

top of the other, like the centre diagram. Lace an elastic band

alternately over and under, as in the right-hand diagram (thick

solid lines show where the band is on top) – while holding the

pieces down with your finger.

Now let go.

If you’ve got the right size and strength of elastic band, the

whole thing will pop up to form a three-dimensional dodeca-

hedron.

Pop-up Dodecahedron // 7



Popped-up
dodecahedron.

...........................................
Sliced Fingers

Here’s how to wrap a loop of string around somebody’s fingers –

your own or those of a ‘volunteer’ – so that when it is pulled tight

it seems to slice through the fingers. The trick is striking because

we know from experience that if the string is genuinely linked

with the fingers then it shouldn’t slip off. More precisely,

imagine that your fingers all touch a fixed surface – thereby

preventing the string from sliding off their tips. The trick is

equivalent to removing the loop from the holes created by your

fingers and the surface. If the loop were really linked through

those holes, you couldn’t remove it at all, so it has to appear to be

linked without actually being linked.

If by mistake it is linked, it really would have to slice through

your fingers, so be careful.

How (not) to slice
your fingers off.

Why is this a mathematical trick? The connection is

topology, a branch of mathematics that emerged over the past

150 years, and is now central to the subject. Topology is about

properties such as being knotted or linked – geometrical features

that survive fairly drastic transformations. Knots remain knotted

even if the string is bent or stretched, for instance.
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Make a loop from a 1-metre length of string. Hook one end

over the little finger of the left hand, twist, loop it over the next

finger, twist in the same direction, and keep going until it passes

behind the thumb (left picture). Now bring it round in front of

the thumb, and twist it over the fingers in reverse order (right

picture). Make sure that when coming back, all the twists are in

the opposite direction to what they were the first time.

Fold the thumb down to the palm of the hand, releasing the

string. Pull hard on the free loop hanging from the little finger

. . . and you can hear it slice through those fingers. Yet,

miraculously, no damage is done.

Unless you get a twist in the wrong direction somewhere............................................
Turnip for the Books

‘It’s been a good year for turnips,’ farmer Hogswill remarked to

his neighbour, Farmer Suticle.

‘Yup, that it has,’ the other replied. ‘Howmany did you grow?’

‘Well . . . I don’t exactly recall, but I do remember that when

I took the turnips to market, I sold six-sevenths of them, plus

one-seventh of a turnip, in the first hour.’

‘Must’ve been tricky cuttin’ ’em up.’

‘No, it was a whole number that I sold. I never cuts ’em.’

‘If’n you say so, Hogswill. Then what?’

‘I sold six-sevenths of what was left, plus one-seventh of a

turnip, in the second hour. Then I sold six-sevenths of what was

left, plus one-seventh of a turnip, in the third hour. And finally I

sold six-sevenths of what was left, plus one-seventh of a turnip,

in the fourth hour. Then I went home.’

‘Why?’

‘’Cos I’d sold the lot.’

How many turnips did Hogswill take to market?

Answer on page 253...........................................
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The Four-Colour Theorem

Problems that are easy to state can sometimes be very hard to

answer. The four-colour theorem is a notorious example. It all

began in 1852 with Francis Guthrie, a graduate student at

University College, London. Guthrie wrote a letter to his younger

brother Frederick, containing what he thought would be a simple

little puzzle. He had been trying to colour a map of the English

counties, and had discovered that he could do it using four

colours, so that no two adjacent counties were the same colour.

He wondered whether this fact was special to the map of

England, or more general. ‘Can every map drawn on the plane be

coloured with four (or fewer) colours so that no two regions

having a common border have the same colour?’ he wrote.

It took 124 years to answer him, and even now, the answer

relies on extensive computer assistance. No simple conceptual

proof of the four-colour theorem – one that can be checked step

by step by a human being in less than a lifetime – is known.

Colouring England’s counties with four colours – one solution
out of many.

Frederick Guthrie couldn’t answer his brother’s question, but

he ‘knew a man who could’ – the famous mathematician

Augustus De Morgan. However, it quickly transpired that De

Morgan couldn’t, as he confessed in October of the same year in a
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letter to his even more famous Irish colleague, Sir William Rowan

Hamilton.

It is easy to prove that at least four colours are necessary for

some maps, because there are maps with four regions, each

adjacent to all the others. Four counties in the map of England

(shown here slightly simplified) form such an arrangement,

which proves that at least four colours are necessary in this case.

Can you find them on the map?

A simple map
needing four colours.

De Morgan did make some progress: he proved that it is not

possible to find an analogous map with five regions, each

adjacent to all four of the others. However, this does not prove

the four-colour theorem. All it does is prove that the simplest

way in which it might go wrong doesn’t happen. For all we

know, there might be a very complicated map with, say, a

hundred regions, which can’t be coloured using only four

colours because of the way long chains of regions connect to

their neighbours. There’s no reason to suppose that a ‘bad’ map

has only five regions.

The first printed reference to the problem dates from 1878,

when Arthur Cayley wrote a letter to the Proceedings of the London

Mathematical Society (a society founded by De Morgan) to ask

whether anyone had solved the problem yet. They had not, but

in the following year Arthur Kempe, a barrister, published a

proof, and that seemed to be that.

Kempe’s proof was clever. First he proved that any map

contains at least one region with five or fewer neighbours. If a

region has three neighbours, you can shrink it away, getting a

simpler map, and if the simpler map can be 4-coloured, so can

The Four-Colour Theorem // 11



the original one. You just give the region that you shrunk

whichever colour differs from those of its three neighbours.

Kempe had a more elaborate method for getting rid of a region

with four or five neighbours. Having established this key fact, the

rest of the proof was straightforward: to 4-colour a map, keep

shrinking it, region by region, until it has four regions or fewer.

Colour those regions with different colours, and then reverse the

procedure, restoring regions one by one and colouring them

according to Kempe’s rules. Easy!

If the right-
hand map can
be 4-coloured,
so can the left-
hand one.

It looked too good to be true – and it was. In 1890 Percy

Heawood discovered that Kempe’s rules didn’t always work. If

you shrunk a region with five neighbours, and then tried to put it

back, you could run into terminal trouble. In 1891 Peter Guthrie

Tait thought he had fixed this error, but Julius Petersen found a

mistake in Tait’s method, too.

Heawood did observe that Kempe’s method can be adapted

to prove that five colours are always sufficient for any map. But

no one could find a map that needed more than four. The gap was

tantalising, and quickly became a disgrace. When you know that

a mathematical problem has either 4 or 5 as its answer, surely

you ought to be able to decide which!

But . . . no one could.

The usual kind of partial progress then took place. In 1922

Philip Franklin proved that all maps with 26 or fewer regions can

be 4-coloured. This wasn’t terribly edifying in itself, but

Franklin’s method paved the way for the eventual solution by

introducing the idea of a reducible configuration. A configuration

is any connected set of regions within the map, plus some
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information about how many regions are adjacent to those in

the configuration. Given some configuration, you can remove it

from the map to get a simpler map – one with fewer regions. The

configuration is reducible if there is a way to 4-colour the original

map, provided you can 4-colour the simpler map. In effect, there

has to be a way to ‘fill in’ colours in that configuration, once

everything else has been 4-coloured.

A single region with only three neighbours forms a reducible

configuration, for instance. Remove it, and 4-colour what’s left –

if you can. Then put that region back, and give it a colour that

has not been used for its three neighbours. Kempe’s failed proof

does establish that a region with four neighbours forms a

reducible configuration. Where he went wrong was to claim the

same thing for a region with five neighbours.

Franklin discovered that configurations containing several

regions can sometimes work when single regions don’t. Lots of

multi-region configurations turn out to be reducible.

Kempe’s proof would have worked if every region with five

neighbours were reducible, and the reason why it would have

worked is instructive. Basically, Kempe thought he had proved

two things. First, every map contains a region with either three,

four or five adjacent ones. Second, each of the associated

configurations is reducible. Now these two facts together imply

that every map contains a reducible configuration. In particular,

when you remove a reducible configuration, the resulting

simpler map also contains a reducible configuration. Remove

that one, and the same thing happens. So, step by step, you can

get rid of reducible configurations until the result is so simple

that it has at most four regions. Colour those however you wish –

at most four colours will be needed. Then restore the previously

removed configuration; since this was reducible, the resulting

map can also be 4-coloured . . . and so on. Working backwards,

we eventually 4-colour the original map.

This argument works because every map contains one of our

irreducible configurations: they form an ‘unavoidable set’.

Kempe’s attempted proof failed because one of his config-
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urations, a region with five neighbours, isn’t reducible. But the

message from Franklin’s investigation is: don’t worry. Try a

bigger list, using lots of more complicated configurations. Dump

the region with five neighbours; replace it by several configura-

tions with two or three regions. Make the list as big as you need.

If you can find some unavoidable set of reducible configurations,

however big and messy, you’re done.

In fact – and this matters in the final proof – you can get away

with a weaker notion of unavoidability, applying only to

‘minimal criminals’: hypothetical maps that require five colours,

with the nice feature that any smaller map needs only four

colours. This condition makes it easier to prove that a given set is

unavoidable. Ironically, once you prove the theorem, it turns out

that no minimal criminals exist. No matter: that’s the proof

strategy.

In 1950 Heinrich Heesch, who had invented a clever method

for proving that many configurations are reducible, said that he

believed the four-colour theorem could be proved by finding an

unavoidable set of reducible configurations. The only difficulty

was to find one – and it wouldn’t be easy, because some rule-of-

thumb calculations suggested that such a set would have to

include about 10,000 configurations.

By 1970 Wolfgang Haken had found some improvements to

Heesch’s method for proving configurations to be reducible, and

began to feel that a computer-assisted proof was within reach. It

should be possible to write a computer program to check that

each configuration in some proposed set is reducible. You could

write down several thousand configurations by hand, if you

really had to. Proving them unavoidable would be time-

consuming, but not necessarily out of reach. But with the

computers then available, it would have taken about a century to

deal with an unavoidable set of 10,000 configurations. Modern

computers can do the job in a few hours, but Haken had to work

with what was available, which meant that he had to improve

the theoretical methods, and cut the calculation down to a

feasible size.
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Working with Kenneth Appel, Haken began a ‘dialogue’ with

his computer. He would think of potential new methods for

attacking the problem; the computer would then do lots of sums

designed to tell him whether these methods were likely to

succeed. By 1975, the size of an unavoidable set was down to

only 2,000, and the two mathematicians had found much faster

tests for irreducibility. Now there was a serious prospect that a

human–machine collaboration could do the trick. In 1976 Appel

and Haken embarked on the final phase: working out a suitable

unavoidable set. They would tell the computer what set they had

in mind, and it would then test each configuration to see

whether it was reducible. If a configuration failed this test, it was

removed and replaced by one or more alternatives, and the

computer would repeat the test for irreducibility. It was a delicate

process, and there was no guarantee that it would stop – but if it

ever did, they would have found an unavoidable set of

irreducible configurations.

In June 1976 the process stopped. The computer reported

that the current set of configurations – which at that stage

contained 1,936 of them, a figure they later reduced to 1,405 –

was unavoidable, and every single one of those 1,936 config-

urations was irreducible. The proof was complete.

The computation took about 1,000 hours in those days, and

the test for reducibility involved 487 different rules. Today, with

faster computers, we can repeat the whole thing in about an

hour. Other mathematicians have found smaller unavoidable

sets and improved the tests for reducibility. But no one has yet

managed to cut down the unavoidable set to something so small

that an unaided human can verify that it does the job. And even

if somebody did do that, this type of proof doesn’t provide a very

satisfactory explanation of why the theorem is true. It just says

‘do a lot of sums, and the end result works’. The sums are clever,

and there are some neat ideas involved, but most mathemati-

cians would like to get a bit more insight into what’s really going

on. One possible approach is to invent some notion of

‘curvature’ for maps, and interpret reducibility as a kind of
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‘flattening out’ process. But no one has yet found a suitable way

to do this.

Nevertheless, we now know that the four-colour theorem is

true, answering Francis Guthrie’s innocent-looking question.

Which is an amazing achievement, even if it does depend on a

little bit of help from a computer.

Answer on page 254...........................................
Shaggy Dog Story

Brave Sir Lunchalot was travelling through foreign parts.

Suddenly there was a flash of lighting and a deafening crack of

thunder, and the rain started bucketing down. Fearing rust, he

headed for the nearest shelter, Duke Ethelfred’s castle. He arrived

to find the Duke’s wife, Lady Gingerbere, weeping piteously.

Sir Lunchalot liked attractive young ladies, and for a brief

moment he noticed a distinct glint through Gingerbere’s tears.

Ethelfred was very old and frail, he observed . . . Only one thing,

he vowed, would deter him from a secret tryst with the Lady –

the one thing in all the world that he could not stand.

Puns.

Having greeted the Duke, Lunchalot enquired why

Gingerbere was so sad.

‘It is my uncle, Lord Elpus,’ she explained. ‘He died yester-

day.’

‘Permit me to offer my sincerest condolences,’ said

Lunchalot.

‘That is not why I weep so . . . so piteously, sir knight,’ replied

Gingerbere. ‘My cousins Gord, Evan and Liddell are unable to

fulfil the terms of uncle’s will.’

‘Why ever not?’

‘It seems that Lord Elpus invested the entire family fortune in

a rare breed of giant riding-dogs. He owned 17 of them.’

Lunchalot had never heard of a riding-dog, but he did not
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wish to display his ignorance in front of such a lithesome lady.

But this fear, it appeared, could be set to rest, for she said,

‘Although I have heard much of these animals, I myself have

never set eyes on one.’

‘They are no fit sight for a fair lady,’ said Ethelfred firmly.

‘And the terms of the will—?’ Lunchalot asked, to divert the

direction of the conversation.

‘Ah. Lord Elpus left everything to his three sons. He decreed

that Gord should receive half the dogs, Evan should receive one-

third, and Liddell one-ninth.’

‘Mmm. Could be messy.’

‘No dog is to be subdivided, good knight.’

Lunchalot stiffened at the phrase ‘good knight’, but decided

it had been uttered innocently and was not a pathetic attempt at

humour.

‘Well—’ Lunchalot began.

‘Pah, ’tis a puzzle as ancient as yonder hills!’ said Ethelfred

scathingly. ‘All you have to do is take one of our own riding-dogs

over to the castle. Then there are 18 of the damn’ things!’

‘Yes, my husband, I understand the numerology, but—’

‘So the first son gets half that, which is 9; the second gets one-

third, which is 6; the third son gets one-ninth, which is 2. That

makes 17 altogether, and our own dog can be ridden back here!’

‘Yes, my husband, but we have no one here who is manly

enough to ride such a dog.’

Sir Lunchalot seized his opportunity. ‘Sire, I will ride your

dog!’ The look of admiration in Gingerbere’s eye showed him

how shrewd his gallant gesture had been.

‘Very well,’ said Ethelfred. ‘I will summon my houndsman

and he will bring the animal to the courtyard. Where we shall

meet them.’

They waited in an archway as the rain continued to fall.

When the dog was led into the courtyard, Lunchalot’s jaw

dropped so far that it was a good job he had his helmet on. The

animal was twice the size of an elephant, with thick striped fur,

claws like broadswords, blazing red eyes the size of Lunchalot’s

Shaggy Dog Story // 17



shield, huge floppy ears dangling to the ground, and a tail like a

pig’s – only with more twists and covered in sharp spines. Rain

cascaded off its coat in waterfalls. The smell was indescribable.

Perched improbably on its back was a saddle.

Gingerbere seemed even more shocked than he by the sight

of this terrible monstrosity. However, Sir Lunchalot was

undaunted. Nothing could daunt his confidence. Nothing could

prevent a secret tryst with the Lady, once he returned astride the

giant hound, the will executed in full. Except . . .

Well, as it happened, Sir Lunchalot did not ride the

monstrous dog to Lord Elpus’s castle, and for all he knows the

will has still not been executed. Instead, he leaped on his horse

and rode off angrily into the stormy darkness, mortally offended,

leaving Gingerbere to suffer the pangs of unrequited lust.

It wasn’t Ethelfred’s dodgy arithmetic – it was what the Lady

had said to her husband in a stage whisper.

What did she say?

Answer on page 254...........................................
Shaggy Cat Story

No cat has eight tails.

One cat has one tail.

Adding: one cat has nine tails............................................
Rabbits in the Hat

The Great Whodunni, a stage magician, placed his top hat on the

table.

‘In this hat are two rabbits,’ he announced. ‘Each of them is

either black or white, with equal probability. I am now going to

convince you, with the aid of my lovely assistant Grumpelina,

that I can deduce their colours without looking inside the hat!’
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He turned to his assistant, and extracted a black rabbit from

her costume. ‘Please place this rabbit in the hat.’ She did.

Pop him in the hat and deduce what’s already there.

Whodunni now turned to the audience. ‘Before Grumpelina

added the third rabbit, there were four equally likely combina-

tions of rabbits.’ He wrote a list on a small blackboard: BB, BW,

WB and WW. ‘Each combination is equally likely – the

probability is 1
4.

‘But then I added a black rabbit. So the possibilities are BBB,

BWB, BBW and BWW – again, each with probability 1
4.

‘Suppose – I won’t do it, this is hypothetical – suppose I were

to pull a rabbit from the hat. What is the probability that it is

black? If the rabbits are BBB, that probability is 1. If BWB or BBW,

it is 2
3. If BWW, it is 1

3. So the overall probability of pulling out a

black rabbit is

1

4
61þ 1

4
6

2

3
þ 1

4
6

2

3
þ 1

4
6

1

3

which is exactly 2
3.

‘But – if there are three rabbits in a hat, of which exactly r are

black and the rest white, the probability of extracting a black

rabbit is r=3. Therefore r ¼ 2, so there are two black rabbits in the

hat.’ He reached into the hat and pulled out a black rabbit. ‘Since

I added this black rabbit, the original pair must have been one

black and one white!’

The Great Whodunni bowed, to tumultuous applause. Then
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he pulled two rabbits from the hat – one pale lilac and the other

shocking pink.

It seems evident that you can’t deduce the contents of a hat

without finding out what’s inside. Adding the extra rabbit and

then removing it again (was it the same black rabbit? Do we

care?) is a clever piece of misdirection. But why is the calculation

wrong?

Answer on page 255...........................................
River Crossing 1 – Farm Produce

Alcuin of Northumbria, aka Flaccus Albinus Alcuinus or

Ealhwine, was a scholar, a clergyman and a poet. He lived in the

eighth century and rose to be a leading figure at the court of the

emperor Charlemagne. He included this puzzle in a letter to the

emperor, as an example of ‘subtlety in Arithmetick, for your

enjoyment’. It still has mathematical significance, as I’ll

eventually explain. It goes like this.

A farmer is taking a wolf, a goat and a basket of cabbages to

market, and he comes to a river where there is a small boat. He

can fit only one item of the three into the boat with him at any

time. He can’t leave the wolf with the goat, or the goat with the

cabbages, for reasons that should be obvious. Fortunately the

wolf detests cabbage. How does the farmer transport all three

items across the river?

Answer on page 256...........................................
More Curious Calculations

The next few calculator curiosities are variations on one basic

theme.

(1) Enter a three-digit number – say 471. Repeat it to get 471,471.
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Now divide that number by 7, divide the result by 11, and divide

the result by 13. Here we get

471;471=7 ¼ 67;353

67;353=11 ¼ 6;123

6;123=13 ¼ 471

which is the number you first thought of.

Try it with other three-digit numbers – you’ll find that

exactly the same trick works.

Now, mathematics isn’t just about noticing curious things –

it’s also important to find out why they happen. Here we can do

that by reversing the entire calculation. The reverse of division is

multiplication, so – as you can check – the reverse procedure

starts with the three-digit result 471, and gives

471613 ¼ 6;123

6;123611 ¼ 67;353

67;35367 ¼ 471;471

Not terribly helpful as it stands . . . but what this is telling us is

that

47161361167 ¼ 471;471

So it could be a good idea to see what 1361167 is. Get your

calculator and work this out. What do you notice? Does it

explain the trick?

(2) Another thing mathematicians like to do is ‘generalise’. That

is, they try to find related ideas that work in similar ways.

Suppose we start with a four-digit number, say 4,715. What

should we multiply it by to get 47,154,715? Can we achieve that

in several stages, multiplying by a series of smaller numbers?

To get started, divide 47,154,715 by 4,715.

(3) If your calculator runs to ten digits (nowadays a lot of them

do), what would the corresponding trick be with five-digit

numbers?
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(4) If your calculator handles numbers with at least 12 digits, go

back to a three-digit number, say 471 again. This time, instead of

multiplying it by 7, 11 and 13, try multiplying it by 7, then 11,

then 13, then 101, then 9,901. What happens? Why?

(5) Think of a three-digit number, such as 128. Now multiply

repeatedly by 3, 3, 3, 7, 11, 13 and 37. (Yes, three multiplications

by 3.) The result is 127,999,872 – nothing special here. So add the

number your first thought of: 128. Now what do you get?

Answer on page 257...........................................
Extracting the Cherry

This puzzle is a golden oldie, with a simple but elusive answer.

The cocktail cherry is inside the glass, which is formed from

matches. Your task is to move at most two of the matches,

so that the cherry is then outside the glass. You can turn the glass

sideways or upside down if you wish, but the shape must remain

the same.

Move two matches
to extract the cherry.

Answer on page 258...........................................
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Make Me a Pentagon

You have a long, thin rectangular strip of paper. Your task is to

make from it a regular pentagon (a five-sided figure with all edges

the same length and all angles the same size).

Unorthodox
geometry.

Answer on page 258...........................................
What is p?

The number p, which is approximately 3.141 59, is the length of

the circumference of a circle whose diameter is exactly 1. More

generally, a circle of diameter d has a circumference of pd. A

simple approximation to p is 31
7 or 22/7, but this is not exact. 3

1
7 is

approximately 3.14 285, which is wrong by the third decimal

place. A better approximation is 355/113, which is 3.141592 9 to

seven places, whereas p is 3.141 592 6 to seven places.

How do we know that p is not an exact fraction? However

much you continue to improve the approximation x=y by using

ever larger numbers, you can never get to p itself, only better and

better approximations. A number that cannot be written exactly

as a fraction is said to be irrational. The simplest proof that p is

irrational uses calculus, and it was found by Johann Lambert in

1770. Although we can’t write down an exact numerical

representation of p, we can write down various formulas that

define it precisely, and Lambert’s proof uses one of those

formulas.

More strongly, p is transcendental – it does not satisfy any

algebraic equation that relates it to rational numbers. This was

proved by Ferdinand Lindemann in 1882, also using calculus.
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The fact that p is transcendental implies that the classical

geometric problem of ‘squaring the circle’ is impossible. This

problem asks for a Euclidean construction of a square whose area

is equal to that of a given circle (which turns out to be equivalent

to constructing a line whose length is the circumference of the

circle). A construction is called Euclidean if it can be performed

using an unmarked ruler and a compass. Well, to be pedantic, a

‘pair of compasses’, which means a single instrument, much as a

‘pair of scissors’ comes as one gadget............................................
Legislating the Value of p

There is a persistent myth that the State Legislature of Indiana

(some say Iowa, others Idaho) once passed a law declaring the

correct value of p to be – well, sometimes people say 3,

sometimes 3 1
6 . . .

Anyway, the myth is false.

However, something uncomfortably close nearly happened.

The actual value concerned is unclear: the document in question

seems to imply at least nine different values, all of them wrong.

The law was not passed: it was ‘indefinitely postponed’, and

apparently still is. The law concerned was House Bill 246 of the

Indiana State Legislature for 1897, and it empowered the State of

Indiana to make sole use of a ‘new mathematical truth’ at no

cost. This Bill was passed – there was no reason to do otherwise,

since it did not oblige the State to do anything. In fact, the vote

was unanimous.

The new truth, however, was a rather complicated, and

incorrect, attempt to ‘square the circle’ – that is, to construct p

geometrically. An Indianapolis newspaper published an article

pointing out that squaring the circle is impossible. By the time

the Bill went to the Senate for confirmation, the politicians –

even though most of them knew nothing about p – had sensed

that there were difficulties. (The efforts of Professor C.A. Waldo

of the Indiana Academy of Science, a mathematician who
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happened to be visiting the House when the Bill was debated,

probably helped concentrate their minds.) They did not debate

the validity of the mathematics; they decided that the matter

was not suitable for legislation. So they postponed the bill . . .

and as I write, 111 years later, it remains that way.

The mathematics involved was almost certainly the brain-

child of Edwin J. Goodwin, a doctor who dabbled in mathe-

matics. He lived in the village of Solitude in Posey County,

Indiana, and at various times claimed to have trisected the angle

and duplicated the cube – two other famous and equally

impossible feats – as well as squaring the circle. At any rate, the

legislature of Indiana did not consciously attempt to give p an

incorrect value by law – although there is a persuasive argument

that passing the Bill would have ‘enacted’ Goodwin’s approach,

implying its accuracy in law, though perhaps not in mathe-

matics. It’s a delicate legal point............................................
If They Had Passed It . . .

If the Indiana State Legislature had passed Bill 246, and if the

worst-case scenario had proved legally valid, namely that the

value of p in law was different from its mathematical value, the

consequences would have been distinctly interesting. Suppose

that the legal value is p 6¼ p, but the legislation states that p ¼ p.

Then

p� p
p� p

¼ 1 mathematically

but

p� p
p� p

¼ 0 legally

Since mathematical truths are legally valid, the law would then

be maintaining that 1 ¼ 0. Therefore all murderers have a cast-

iron defence: admit to one murder, then argue that legally it is

zero murders. And that’s not the last of it. Multiply by one
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billion, to deduce that one billion equals zero. Now any citizen

apprehended in possession of no drugs is in possession of drugs

to a street value of $1 billion.

In fact, any statement whatsoever would become legally

provable.

It seems likely that the Law would not be quite logical enough

for this kind of argument to stand up in court. But sillier legal

arguments, often based on abuse of statistics, have done just

that, causing innocent people to be locked away for long periods.

So Indiana’s legislators might have opened up Pandora’s box............................................
Empty Glasses

I have five glasses in a row. The first three are full and the other

two empty. How can I arrange them so that they are alternately

full and empty, by moving only one glass?

Start like this
. . .

... and end up
like this,
moving only
one glass.

Answer on page 258...........................................
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How Many—

Ways are there to rearrange the letters of the (English) alphabet?

403;291;461;126;605;635;584;000;000

Ways are there to shuffle a pack of cards?

80;658;175;170;943;878;571;660;636;856;403;766;975;

289;505;440;883;277;824;000;000;000;000

Different positions are there for a Rubik cube?

43;252;003;274;489;856;000

Different sudoku puzzles are there?

6;670;903;752;021;072;936;960

(Calculated by Bertram Felgenhauer and Frazer Jarvis in 2005.)

Different sequences of 100 zeros and ones are there?

1;267;650;600;228;229;401;496;703;205;376

...........................................
Three Quickies

(1) After four bridge hands have been dealt, which is the more

likely: that you and your partner hold all the spades, or that you

and your partner hold no spades?

(2) If you took three bananas from a dish holding thirteen

bananas, how many bananas would you have?

(3) A secretary prints out six letters from the computer and

addresses six envelopes to their intended recipients. Her boss, in

a hurry, interferes and stuffs the letters into the envelopes at

random, one letter in each envelope. What is the probability that

exactly five letters are in the right envelope?

Answers on page 258...........................................
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Knight’s Tours

The knight in chess has an unusual move. It can jump two

squares horizontally or vertically, followed by a single square at

right angles, and it hops over any intermediate pieces. The

geometry of the knight’s move has given rise to many

mathematical recreations, of which the simplest is the knight’s

tour. The knight is required to make a series of moves, visiting

each square on a chessboard (or any other grid of squares) exactly

once. The diagram shows a tour on a 565 board, and also shows

what the possible moves look like. This tour is not ‘closed’– that

is, the start and finish squares are not one knight’s move apart.

Can you find a closed tour on the 565 board?

(Left) A 565
knight’s tour,
and (right) a
partial 464
knight’s tour.

I tried to find a 464 knight’s tour, but I got stuck after visiting

13 squares. Can you find a knight’s tour that visits all 16 squares?

If not, what is the largest number of squares that the knight can

visit?

There is a vast literature on this topic. Good websites include:

www.ktn.freeuk.com

mathworld.wolfram.com/KnightsTour.html

Answers on page 259...........................................
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Much Undo About Knotting

A mathematician’s knot is like an ordinary knot in a piece of

string, but the ends of the string are glued together so that the

knot can’t escape. More precisely, a knot is a closed loop in space.

The simplest such loop is a circle, which is called the unknot. The

next simplest is the trefoil knot.

Unknot and trefoil.

Mathematicians consider two knots to be ‘the same’ – the

jargon is topologically equivalent – if one can be continuously

transformed into the other. ‘Continuously’ means you have to

keep the string in one piece – no cutting – and it can’t pass

through itself. Knot theory becomes interesting when you

discover that a really complicated knot, such as Haken’s Gordian

knot, is in fact just the unknot in disguise.

Haken’s
Gordian
knot.

The trefoil knot is genuine – it can’t be unknotted. The first

proof of this apparently obvious fact was found in the 1920s.
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Knots can be listed according to their complexity, which is

measured by the crossing number – the number of apparent

crossings that occur in a picture of the knot when you draw it

using as few crossings as possible. The crossing number of the

trefoil knot is 3.

The number of topologically distinct knots with a given

number of crossings grows rapidly. Up to 16 crossings, the

numbers are:

No. of crossings 3 4 5 6 7 8 9 10

No. of knots 1 1 2 3 7 21 49 165
....................................................................................................................................................................

No. of crossings 11 12 13 14 15 16

No. of knots 552 2176 9,988 46,972 253,293 1,388,705

....................................................................................................................................................................

(For pedants: these numbers refer to prime knots, which can’t be

transformed into two separate knots tied one after the other, and

mirror images are ignored.)

The knots with 7 or fewer crossings.

The knots with 8 crossings.
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The knots with 9 crossings.

Knot theory is used in molecular biology, to understand

knots in DNA, and in quantum physics. Just in case you thought

knots were good only for tying up parcels.

For further information see

katlas.math.toronto.edu/wiki/The_Rolfsen_Knot_Table...........................................
White-Tailed Cats

‘I see you’ve got a cat,’ said Ms Jones to Ms Smith. ‘I do like its

cute white tail! How many cats do you have?’

‘Not a lot,’ said Ms Smith. ‘Ms Brown next door has twenty,

which is a lot more than I’ve got.’

‘You still haven’t told me how many cats you have!’

‘Well . . . let me put it like this. If you chose two distinct cats

of mine at random, the probability that both of them have white

tails is exactly one-half.’

‘That doesn’t tell me how many you’ve got!’

‘Oh yes it does.’

How many cats does Ms Smith have – and how many have

white tails?

Answer on page 259...........................................
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To Find Fake Coin

In February 2003 Harold Hopwood of Gravesend wrote a short

letter to the Daily Telegraph, saying that he had solved the

newspaper’s crossword every day since 1937, but one conun-

drum had been nagging away at the back of his mind since his

schooldays, and at the age of 82 he had finally decided to enlist

some help.

The puzzle was this. You are given 12 coins. They all have the

same weight, except for one, which may be either lighter or

heavier than the rest. You have to find out which coin is

different, and whether it is light or heavy, using at most three

weighings on a pair of scales. The scales have no graduations for

weights; they just have two pans, and you can tell whether they

are in balance, or the heavier one has gone down and the lighter

one has gone up.

Exactly one coin is either light or heavy: find out which in three
weighings.

Before reading on, you should have a go. It’s quite addictive.

Within days, the paper’s letters desk had received 362 letters

and calls about the puzzle, nearly all asking for the answer, and

they phoned me. I recognised the problem as one of the classic

puzzles, typical of the ‘weights and scales’ genre, but I’d

forgotten the answer. But my friend Marty, who happened to be

in the room when I answered the phone, also recognised the

problem. The same puzzle had inspired him as a teenager, and

his successful solution had led him to become a mathematician.

Of course he had forgotten how the solution went, but we
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came up with a method in which we weighed various sets of

coins against various others, and faxed it to the newspaper.

In fact, there are many answers, including a very clever one

which I finally remembered on the day that the Telegraph printed

our less elegant method. I had seen it twenty years earlier in New

Scientist magazine, and it had been reproduced in Thomas H.

O’Beirne’s Puzzles and Paradoxes, which I had on my bookshelf.

Puzzles like this seem to come round every twenty years or so,

presumably when a new generation is exposed to them, a bit like

an epidemic that gets a new lease of life when the population

loses all immunity. O’Beirne traced it back to Howard Grossman

in 1945, but it is almost certainly much older, going back to the

seventeenth century. It wouldn’t surprise me if one day we find it

on a Babylonian cuneiform tablet.

O’Beirne offered a ‘decision tree’ solution, along the lines

that Marty and I had concocted. He also recalled the elegant

1950 solution published by ‘Blanche Descartes’ in Eureka, the

journal of the Archimedeans, Cambridge University’s under-

graduate mathematics society. Ms Descartes was in actuality

Cedric A.B. Smith, and his solution is a masterpiece of ingenuity.

It is presented as a poem about a certain Professor Felix

Fiddlesticks, and the main idea goes like this:

F set the coins out in a row

And chalked on each a letter, so,

To form the words ‘F AM NOT LICKED’

(An idea in his brain had clicked.)

And now his mother he’ll enjoin:

MA DO LIKE

ME TO FIND

FAKE COIN

This cryptic list of three weighings, one set of four against

another, solves the problem, as Eureka explains, also in verse. To

convince you, I’m going to list all the outcomes of the

weighings, according to which coin is heavy or light. Here
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L means that the left pan goes down, R that the right pan goes

down, and – means they stay balanced.

False coin 1st weighing 2nd weighing 3rd weighing
....................................................................................................................................................................

F heavy — R L

F light — L R

A heavy L — L

A light R — R

M heavy L L —

M light R R —

N heavy — R R

N light — L L

O heavy L L R

O light R R L

T heavy — L —

T light — R —

L heavy R — —

L light L — —

I heavy R R R

I light L L L

C heavy — — R

C light — — L

K heavy R — L

K light L — R

E heavy R L L

E light L R R

D heavy L R —

D light R L —
....................................................................................................................................................................

You can check that no two possibilities give the same results.

The Telegraph’s publication of a valid solution did not end the

matter. Readers wrote in to object to our answer, on spurious

grounds. They wrote to improve it, not always by valid methods.

They e-mailed to point out Ms Descartes’s solution or similar

ones. They told us about other weighing puzzles. They thanked

us for setting their minds at rest. They cursed us for reopening an

old wound. It was as if some vast, secret reservoir of folk wisdom

had suddenly been breached. One correspondent remembered
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that the puzzle had featured on BBC television in the 1960s, with

the solution being given the following night. Ominously, the

letter continued, ‘I do not recall why it was raised in the first

place, or whether that was my first acquaintance with it; I have a

feeling that it was not.’...........................................
Perpetual Calendar

In 1957 John Singleton patented a desk calendar that could

represent any date from 01 to 31 using two cubes, but he let the

patent lapse in 1965. Each cube bears six digits, one on each face.

A two-cube
calendar, and
two of the days
it can represent.

The picture shows how such a calendar represents the 5th

and the 25th day of the month. I have intentionally omitted any

other numbers from the faces. You are allowed to place the cubes

with any of the six faces showing, and you can also put the grey

one on the left and the white one on the right.

What are the numbers on the two cubes?

Answer on page 260...........................................
Mathematical Jokes 1*

A biologist, a statistician and a mathematician are sitting outside

a cafe watching the world go by. A man and a woman enter a

building across the road. Ten minutes later, they come out

accompanied by a child.

‘They’ve reproduced,’ says the biologist.

* The purpose of these jokes is not primarily to make you laugh. It
is to show you what makes mathematicians laugh, and to provide
you with a glimpse into an obscure corner of the world’s
mathematical subculture.
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‘No,’ says the statistician. ‘It’s an observational error. On

average, two and a half people went each way.’

‘No, no, no,’ says the mathematician. ‘It’s perfectly obvious.

If someone goes in now, the building will be empty.’...........................................
Deceptive Dice

The Terrible Twins, Innumeratus and Mathophila, were bored.

‘I know,’ said Mathophila brightly. ‘Let’s play dice!’

‘Don’t like dice.’

‘Ah, but these are special dice,’ said Mathophila, digging them

out of an old chocolate box. One was red, one yellow and one

blue.

Innumeratus picked up the red dice.* ‘There’s something

funny about this one,’ he said. ‘It’s got two 3’s, two4’s and two8’s.’

‘They’re all like that,’ said Mathophila carelessly. ‘The yellow

one has two 1’s, two 5’s and two 9’s – and the blue one has two

2’s, two 6’s and two 7’s.’

‘They look rigged tome,’ said Innumeratus, deeply suspicious.

‘No, they’re perfectly fair. Each face has an equal chance of

turning up.’

‘How do we play, anyway?’

‘We each choose a different one. We roll them simulta-

neously, and the highest number wins. We can play for pocket

money.’ Innumeratus looked sceptical, so his sister quickly

added: ‘Just to be fair, I’ll let you choose first! Then you can

choose the best dice!’

‘Weeelll . . . ’ said Innumeratus, hesitating.

Should he play? If not, why not?

Answer on page 260...........................................
* Strictly speaking, ‘dice’ is the plural, and I should have used ‘die’ –

but I’ve given up fighting that particular battle. I mention this to
stop people writing in to tell me I’ve got it wrong. Anyway, the
proverb tells us ‘never say die’.
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An Age-Old Old-Age Problem

The Emperor Scrumptius was born in 35 BC, and died on his

birthday in AD 35. What was his age when he died?

Answer on page 262...........................................
Why Does Minus Times Minus Make Plus?

When we first meet negative numbers, we are told that multi-

plying two negative numbers together makes a positive number,

so that, for example, ð�2Þ6ð�3Þ ¼ þ6. This often seems rather

puzzling.

The first point to appreciate is that starting from the usual

conventions for arithmetic with positive numbers, we are free to

define ð�2Þ6ð�3Þ to be anything we want. It could be �99, or

127p, if we wished. So the main question is not what is the true

value, but what is the sensible value. Several different lines of

thought all converge on the same result – namely, that

ð�2Þ6ð�3Þ ¼ þ6. I include the þ sign for emphasis.

But why is this sensible? I rather like the interpretation of a

negative number as a debt. If my bank account contains £–3,

then I owe the bank £3. Suppose that my debt is multiplied by 2

(positive): then it surely becomes a debt of £6. So it makes sense

to insist that ðþ2Þ6ð�3Þ ¼ �6, and most of us are happy with

that. What, though, should ð�2Þ6ð�3Þ be? Well, if the bank

kindly writes off (takes away) two debts of £3 each, I am £6 better

off – my account has changed exactly as it would if I had

deposited £þ6. So in banking terms, we want ð�2Þ6ð�3Þ to equal

þ6.

The second argument is that we can’t have both ðþ2Þ6ð�3Þ
and ð�2Þ6ð�3Þ equal to þ6. If that were the case, then we could

cancel the �3 and deduce that þ2 ¼ �2, which is silly.

The third argument begins by pointing out an unstated

assumption in the second one: that the usual laws of arithmetic

should remain valid for negative numbers. It proceeds by adding
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that this is a reasonable thing to aim for, if only for mathematical

elegance. If we require the usual laws to be valid, then

ðþ2Þ6ð�3Þ þ ð�2Þ6ð�3Þ ¼ ð2� 2Þ6ð�3Þ ¼ 06ð�3Þ ¼ 0

so

�6þ ð�2Þ6ð�3Þ ¼ 0

Adding 6 to both sides, we find that

ð�2Þ6ð�3Þ ¼ þ6

In fact a similar argument justifies taking ðþ2Þ6ð�3Þ ¼ �6, as

well.

Putting all this together: mathematical elegance leads us to

define minus times minus to be plus. In applications such as

finance, this choice turns out to match reality in a straightfor-

ward manner. So as well as keeping arithmetic simple, we end up

with a good model for important aspects of the real world.

We could do it differently. But we’d end up by complicating

arithmetic, and reducing its applicability. Basically, there’s no

contest. Even so, ‘minus times minus makes plus’ is a conscious

human convention, not an inescapable fact of nature............................................
Heron Suit

No cat that wears a heron suit is unsociable.

No cat without a tail will play with a gorilla.

Cats with whiskers always wear heron suits.

No sociable cat has blunt claws.

No cats have tails unless they have whiskers.

Therefore:

No cat with blunt claws will play with a gorilla.

Is the deduction logically correct?

Answer on page 262...........................................
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How to Unmake a Greek Cross

To paraphrase the old music-hall joke, almost any insult will

make a Greek cross. But what I want you to do is unmake a Greek

cross. In this region of Puzzledom, a Greek cross is five equal

squares joined to make a þ shape. I want you to convert it to a

square, by cutting it into pieces and reassembling them. Here’s

one solution, using five pieces. But can you find an alternative,

using four pieces, all the same shape?

Greek cross to
square in five
pieces. Now
do it with four.

Answer on page 263...........................................
How to Remember a Round Number

A traditional French rhyme goes like this:*

Que j’aime a faire apprendre

Un nombre utile aux sages!

Glorieux Archimède, artiste ingenieux,

Toi, de qui Syracuse loue encore le mérite!

But to which ‘number useful to the sages’ does it refer? Counting

the letters in each word, treating ‘j’ as a word with one letter and

placing a decimal point after the first digit, we get

3:141 592 653 589 793 238 462 6

* A loose translation is:
How I like to make
The sages learn a useful number!
Glorious Archimedes, ingenious artist,
You whose merit Syracuse still praises.
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which is p to the first 22 decimal places. Many similar

mnemonics for p exist in many languages. In English, one of the

best known is

How I want a drink, alcoholic of course, after the heavy

chapters involving quantum mechanics. One is, yes,

adequate even enough to induce some fun and pleasure

for an instant, miserably brief.

It probably stopped there because the next digit is a 0, and it’s

not entirely clear how best to represent a word with no letters.

(For one convention, see later.) Another is:

Sir, I bear a rhyme excelling

In mystic force, and magic spelling

Celestial sprites elucidate

All my own striving can’t relate.

An ambitious p-mnemonic featured in The Mathematical

Intelligencer in 1986 (volume 8, page 56). This is an informal

‘house journal’ for professional mathematicians. The mnemonic

is a self-referential story encoding the first 402 decimals of p. It

uses punctuation marks (ignoring full stops) to represents the

digit zero, and words with more than 9 letters represent two

consecutive digits – for instance, a word with 13 letters

represents the digits 13 in that order. Oh, and any actual digit

represents itself. The story begins like this:

For a time I stood pondering on circle sizes. The large

computer mainframe quietly processed all of its assembly

code. Inside my entire hope lay for figuring out an elusive

expansion. Value: pi. Decimals expected soon. I nervously

entered a format procedure. The mainframe processed the

request. Error. I, again entering it, carefully retyped. This

iteration gave zero error printouts in all – success.

For the rest of the story, and many other p-mnemonics in various

languages, see

www.geocities.com/capecanaveral/lab/3550/pimnem.htm...........................................
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The Bridges of Königsberg

Occasionally, a simple puzzle starts a whole new area of

mathematics. Such occurrences are rare, but I can think of at

least three. The most famous such puzzle is known as the Bridges

of Königsberg, which led Leonhard Euler* to invent a branch of

graph theory in 1735. Königsberg, which was in Prussia in those

days, straddled the river Pregel. There were two islands,

connected to the banks and each other by seven bridges. The

puzzle was: is it possible to find a path that crosses each bridge

exactly once?

Euler’s
diagram
of the
Königsberg
bridges.

Euler solved the puzzle by proving that no solution exists.

More generally, he gave a criterion for any problem of this kind

to have a solution, and observed that it did not apply to this

particular example. He pointed out that the exact geometry is

irrelevant – what matters is how everything is connected. So the

puzzle reduces to a simple network of dots, joined by lines, here

shown superimposed on the map. Each dot corresponds to one

connected piece of land, and two dots are joined by lines if there

is a bridge linking the corresponding pieces of land.

* It is mandatory to point out that his name is pronounced ‘oiler’,
not ‘yooler’. Numerous oil-based puns then become equally
mandatory, but I won’t mention any.
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Turning the
Königsberg
bridges into
a network.

So we get four dots, A, B, C and D, and seven edges, a, b, c, d,

e, f and g, one for each bridge. The puzzle now simplifies to this:

is it possible to find a path through the network that includes

each line exactly once? You might like to experiment before

reading on.

To work out when a solution exists, Euler distinguished two

kinds of path. An open tour starts and ends at different dots; a

closed tour starts and ends at the same dot. He proved that for this

particular network, neither kind of tour exists. The main

theoretical idea is the valency of each dot: how many lines meet

there. For instance, 5 lines meet at dot A, so the valency of A is 5.

Suppose that a closed tour exists on some network. Whenever

one of the lines in the tour enters a dot, then the next line must

exit from that dot. So, if a closed tour is possible, the number of

lines at any given dot must be even: every dot must have even

valency. This already rules out any closed tour of the Königsberg

bridges, because that network has three dots of valency 3 and

one of valency 5 – all odd numbers.

A similar criterion works for open tours, but now there must

be exactly two dots of odd valency: one at the start of the tour,

the other at its end. The Königsberg diagram has four vertices

with odd valency, so there is no open tour either.

Euler also proved that these conditions are sufficient for a

tour to exist, provided the diagram is connected – any two dots

must be linked by some path. Euler’s proof of this is quite
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lengthy. Nowadays a proof takes just a few lines, thanks to new

discoveries inspired by his pioneering efforts............................................
How to do Lots of Mathematics

Leonhard Euler was the most prolific mathematician of all time.

He was born in 1707 in Basel, Switzerland, and died in 1783 in St

Petersburg, Russia. He wrote more than 800 research papers, and

a long list of books. Euler had 13 children, and often worked on

his mathematics while one of them sat on his knee. He lost the

sight of one eye in 1735, probably because of a cataract; the other

eye failed in 1766. Going blind seems to have had no effect on

his productivity. His family took notes, and he had an

astonishing mental powers – once doing a mental calculation to

fifty decimal places to decide which of two students had the right

answer.

Leonhard Euler.

Euler spent many years at the court of Queen Catherine the

Great. It has been suggested that to avoid becoming embroiled in

court politics – which could easily prove fatal – Euler spent

nearly all of his time working on mathematics, except when he

was asleep. That way it was obvious that he had no time for

intrigue.

Which reminds me of a mathematical joke: Why should a

mathematician keep a mistress as well as a wife? (For gender-

equality reasons, feel free to change to ‘a lover as well as a
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husband’.) Answer: when the wife thinks you’re with the

mistress, and the mistress thinks you’re with the wife, you have

time to get on with your mathematics............................................
Euler’s Pentagonal Holiday

Here’s your chance to put Euler’s discoveries about tours on

networks to the test. (a) Find an open tour of this network.

(b) Find one that looks the same when you reflect the figure to

interchange left and right.

A network with
an open tour.

Answer on page 263...........................................
Ouroborean Rings

Around 1960 the American mathematician Sherman K. Stein

discovered a curious pattern in the Sanskrit nonsense word

yamátárájabhánasalagám. The composer George Perle told Stein

that the stressed (á ) and unstressed (a) syllables form a

mnemonic for rhythms, and correspond to long and short

beats. Thus the first three syllables, ya má tá, have the rhythm

short, long, long. The second to fourth are má tá rá, long, long,

long – and so on. There are eight possible triplets of long or

short rhythms, and each occurs in the nonsense word exactly

once.

Stein rewrote the word using 0 for short and 1 for long,
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getting 0111010001. Then he noticed that the first two digits are

the same as the last two, so the string of digits can be bent into a

loop, swallowing its own tail. Now you can generate all possible

sequences of three digits 0 and 1 by moving along the loop one

space at a time:

0 1 1 1 0 1 0 0 . . .
0 1 1

1 1 1
1 1 0

1 0 1
0 1 0

1 0 0
0 0 0

0 0 1

I call such sequences ouroborean rings, after the mythical serpent

Ouroboros, which eats its own tail.

There is an ouroborean ring for pairs: 0011. It is unique

except for rotations. Your task is to find one for quadruplets.

That is, arrange eight 0’s and eight 1’s in a ring so that every

possible string of four digits, from 0000 to 1111, appears as a

series of consecutive symbols. (Each string of four must then

occur exactly once.)

Answer on page 263...........................................
The Ourotorus

Are there higher-dimensional analogues of ouroborean rings?

For example, there are sixteen 262 squares with entries 0 or

1. Is it possible to write 0’s and 1’s in a 464 square so that each

possibility occurs exactly once as a subsquare? You must pretend

that opposite edges of the square are joined together, so that it

wraps round into an ourotorus.
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16 pieces for the
ourotorus puzzle.

You can turn this puzzle into a game. Cut out the sixteen

pieces shown – the small dot near the top tells you which way up

they go. Can you arrange them in a 464 grid, keeping the dot at

the top, so that adjacent squares have the same colours along

common edges? This rule also applies to squares that become

adjacent if the top and bottom, or the left and right sides, of the

grid are ‘wrapped round’ so that they join.

Answer on page 264...........................................
Who Was Pythagoras?

We recognise the name ‘Pythagoras’ because it is attached to a

theorem, one that most of us have grappled with at school. ‘The

square on the hypotenuse of a right-angled triangle is equal to

the sum of the squares on the other two sides.’ That is, if you take

any right-angled triangle, then the square of the longest side is

equal to the sum of the squares of the other two sides. Well

known as his theorem may be, the actual person has proved

rather elusive, although we know more about him as a historical

figure than we do for, say, Euclid. What we don’t know is whether

he proved his eponymous theorem, and there are good reasons

to suppose that, even if he did, he wasn’t the first to do so.

But more of that story later.

Pythagoras was Greek, born around 569 BC on the island of

Samos in the north-eastern Aegean. (The exact date is disputed,

but this one is wrong by at most 20 years.) His father,
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Mnesarchus, was a merchant from Tyre; his mother, Pythais, was

from Samos. They may have met when Mnesarchus brought corn

to Samos during a famine, and was publicly thanked by being

made a citizen.

Pythagoras studied philosophy under Pherekydes. He prob-

ably visited another philosopher, Thales of Miletus. He attended

lectures given by Anaximander, a pupil of Thales, and absorbed

many of his ideas on cosmology and geometry. He visited Egypt,

was captured by Cambyses II, the King of Persia, and taken to

Babylon as a prisoner. There he learned Babylonian mathematics

and musical theory. Later he founded the school of Pythagoreans

in the Italian city of Croton (now Crotone), and it is for this that

he is best remembered. The Pythagoreans were a mystical cult.

They believed that the universe is mathematical, and that

various symbols and numbers have a deep spiritual meaning.

Various ancient writers attributed various mathematical

theorems to the Pythagoreans, and by extension to Pythagoras –

notably his famous theorem about right-angled triangles. But we

have no idea what mathematics Pythagoras himself originated.

We don’t know whether the Pythagoreans could prove the

theorem, or just believed it to be true. And there is evidence from

the inscribed clay tablet known as Plimpton 322 that the ancient

Babylonians may have understood the theorem 1200 years

earlier – though they probably didn’t possess a proof, because

Babylonians didn’t go much for proofs anyway............................................
Proofs of Pythagoras

Euclid’s method for proving Pythagoras’s Theorem is fairly

complicated, involving a diagram known to Victorian school-

boys as ‘Pythagoras’s pants’ because it looked like underwear

hung on a washing line. This particular proof fitted into Euclid’s

development of geometry, which is why he chose it. But there

are many other proofs, some of which make the theorem much

more obvious.
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Pythagoras’s
pants.

One of the simplest proofs is a kind of mathematician’s

jigsaw puzzle. Take any right-angled triangle, make four copies,

and assemble them inside a carefully chosen square. In one

arrangement we see the square on the hypotenuse; in the other,

we see the squares on the other two sides. Clearly, the areas

concerned are equal, since they are the difference between the

area of the surrounding square and the areas of the four copies of

the triangle.

(Left) The square on the hypotenuse (plus four triangles). (Right)
The sum of the squares on the other two sides (plus four
triangles). Take away the triangles . . . and Pythagoras’s
Theorem is proved.

Then there’s a cunning tiling pattern. Here the slanting grid

is formed by copies of the square on the hypotenuse, and the

other grid involves both of the smaller squares. If you look at

how one slanting square overlaps the other two, you can see how

to cut the big square into pieces that can be reassembled to make

the two smaller squares.
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Proof by
tiling.

Another proof is a kind of geometric ‘movie’, showing how to

split the square on the hypotenuse into two parallelograms,

which then slide apart – without changing area – to make the

two smaller squares.

Proof by
movie.

...........................................
A Constant Bore

‘Now, this component is a solid copper sphere with a cylindrical

hole bored exactly through its centre,’ said Rusty Nail, the

construction manager. He opened a blueprint on his laptop’s

screen:
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Cross-section of sphere
with cylindrical hole.

‘Looks straightforward,’ said the foreman, Lewis Bolt. ‘That’s

quite a lot of copper.’

‘Coincidentally, that’s what I want you to work out,’ said

Rusty. ‘What volume of copper do we need to cast it?’

Lewis stared at the blueprint. ‘It doesn’t say how big the

sphere is.’ He paused. ‘I can’t find the answer unless you tell me

the radius of the sphere.’

‘Hmmm,’ said Rusty. ‘They must have forgotten to put that

in. But I’m sure you can work something out. I need the answer

by lunchtime.’

What is the volume of copper required? Does it depend on the size

of the sphere?

Answer on page 264...........................................
Fermat’s Last Theorem

The great virtue of Fermat’s Last Theorem is that it’s easy to

understand what it means. What made the theorem famous is

that proving it turned out to be amazingly hard. So hard, in fact,

that it took about 350 years of effort, by many of the world’s

leading mathematicians, to polish it off. And to do that, they had

to invent entire new mathematical theories, and prove things

that looked much harder.
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Pierre de Fermat.

It all started around 1650, when Pierre de Fermat wrote an

enigmatic note in the margin of his copy of Diophantus’s book

Arithmetica: ‘of which fact I have found a remarkable proof, ‘but

this margin is too small to contain it.’ Proof of what? Let me back

up a bit.

Diophantus was probably Greek, and he lived in ancient

Alexandria. Some time around AD 250 he wrote a book about

solving algebraic equations – with a slight twist: the solutions

were required to be fractions, or better still, whole numbers. Such

equations are called Diophantine equations to this day. A typical

Diophantine problem is: find two squares whose sum is square

(using only whole numbers). One possible answer is 9 and 16,

which add up to 25. Here 9 is the square of 3, while 16 is the

square of 4, and 25 is the square of 5. Another answer is 25 (the

square of 5) and 144 (the square of 12), which add up to 169 (the

square of 13). These are the tip of an iceberg.

This particular problem is linked to Pythagoras’s Theorem,

and Diophantus was following a long tradition of looking for

Pythagorean triples – whole numbers that can form the sides of a

right-angled triangle. Diophantus wrote down a general rule for

finding all Pythagorean triples. He wasn’t the first to discover it,

but it belonged very naturally in his book. Now Fermat wasn’t a

professional mathematician – he never held an academic

position. In his day job he was a legal advisor. But his passion was

mathematics, especially what we now call number theory, the

properties of ordinary whole numbers. This area uses the
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simplest ingredients anywhere in mathematics, but paradoxic-

ally it is one of the most difficult areas to make progress in. The

simpler the ingredients, the harder it is to make things with

them.

Fermat pretty much created number theory. He took over

where Diophantus had left off, and by the time he had finished,

the subject was virtually unrecognisable. And some time around

1650 – we don’t even know the exact date – he must have been

thinking about Pythagorean triples, and wondered ‘can we do it

with cubes?’

Just as the square of a number is what you get by multiplying

two copies of the same number, the cube is what you get by

multiplying three copies. That is, the square of 5, say, is

565 ¼ 25, and the cube of 5 is 56565 ¼ 125. These are written

more compactly as 52 and 53, respectively. No doubt Fermat tried

a few possibilities. Is the sum of the cubes of 1 and 2 a cube, for

instance? The cubes here are 1 and 8, so their sum is 9. That’s a

square, but not a cube: no banana.

He surely noticed that you can get pretty close. The cube of 9

is 729; the cube of 10 is 1,000; their sum is 1,729. That’s very

nearly the cube of 12, which is 1,728. Missed by one! Still no

banana.

Like any mathematician, Fermat would have tried bigger

numbers, and used any short cuts he could think of. Nothing

worked. Eventually he gave up: he hadn’t found any solutions,

and by now he suspected that there weren’t any. Except for the

cube of 0 (which is also 0) and any cube whatsoever, which add

up to the whatsoever – but we all know that adding zero makes

no difference to anything, so that’s ‘trivial’, and he wasn’t

interested in trivialities.

OK, so cubes don’t get us anywhere. What about the next

such type of number, fourth powers? You get those by multi-

plying four copies of the same number, for example

3636363 ¼ 81 is the fourth power of 3, written as 34. Still no

joy. In fact, for fourth powers Fermat found a logical proof that

no solutions exist except trivial ones. Very few of Fermat’s proofs
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have survived, and few of them were written down, but we know

how this one went, and it’s both cunning and correct. It takes

some hints from Diophantus’s method of finding Pythagorean

triples.

Fifth powers? Sixth powers? Still nothing. By now Fermat was

ready to make a bold statement: ‘To resolve a cube into the sum

of two cubes, a fourth power into two fourth powers, or in

general any power higher than the second into two powers of the

same kind, is impossible.’ That is: the only way for two nth

powers to add up to an nth power is when n is 2 and we are

looking at Pythagorean triples. This is what he wrote in his

margin, and it’s what caused so much fuss for the next 350 years.

We don’t actually have Fermat’s copy of the Arithmetica with

its marginal notes. What we have is a printed edition of the book

prepared later by his son, which has the notes printed in it.

Fermat included various other unproved but fascinating bits

of number theory in his letters and the marginal notes published

by his son, and the world’s mathematicians rose to the

challenge. Soon all but one of Fermat’s statements had been

proved – apart from one that was disproved, but in that case

Fermat never claimed he had a proof anyway. The sole remaining

‘last theorem’ – not the last one he wrote down, but the last one

that no one else could prove or disprove – was the marginal note

about sums of like powers.

Fermat’s Last Theorem became notorious. Euler proved that

there is no solution in cubes. Fermat himself had done fourth

powers. Peter Lejeune Dirichlet dealt with fifth powers in 1828,

and 14th powers in 1832. Gabriel Lamé published a proof for 7th

powers, but it had a mistake in it. Carl Friedrich Gauss, one of the

best mathematicians who has ever lived and an expert in number

theory, tried to patch up Lamé’s attempt, but failed, and gave up

on the whole problem. He wrote to a scientific friend that the

problem ‘has little interest for me, since a multitude of such

propositions, which one can neither prove nor refute, can easily

be formulated’. But for once Gauss’s instincts let him down: the
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problem is interesting, and his remark seems to have been a case

of sour grapes.

In 1874 Lamé had a new idea, linking Fermat’s Last Theorem

to a special type of complex number – involving the square root

of minus one (see page 184). There was nothing wrong with

complex numbers, but there was a hidden assumption in Lamé’s

argument, and Ernst Kummer wrote to him to inform him that it

went wrong for 23rd powers. Kummer managed to fix Lamé’s

idea, eventually proving Fermat’s Last Theorem for all powers up

to the 100th, except for 37, 59 and 67. Later mathematicians

polished off these powers too, and extended the list, until by

1980 Fermat’s Last Theorem had been proved for all powers up to

the 125,000th.

You might think that this would be good enough, but

mathematicians are made of sterner stuff. It has to be all powers,

or nothing. The first 125,000 whole numbers are minuscule

compared with the infinity of numbers that remain. But

Kummer’s methods needed special arguments for each power,

and they weren’t really up to the job. What was needed was a new

idea. Unfortunately, nobody knew where to look for one.

So number theorists abandoned Fermat’s Last Theorem and

headed off into areas where they could still make progress. One

such area, the theory of elliptic curves, started to get really

exciting, but also very technical. An elliptic curve is not an

ellipse – if it were, we wouldn’t need a different name for it. It is a

curve in the plane whose y-coordinate, squared, is a cubic

formula in its x-coordinate. These curves in turn are connected

with some remarkable expressions involving complex numbers,

called elliptic functions, which were in vogue in the late

nineteenth century. The theory of elliptic curves, and their

associated elliptic functions, became very deep and powerful.
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The elliptic curve
y2 ¼ x3 � 6x þ 6.

Starting around 1970, a series of mathematicians started to

get glimpses of a strange connection between elliptic curves and

Fermat’s Last Theorem. Roughly speaking, if Fermat was wrong,

and two nth powers do add up to another nth power, then those

three numbers determine an elliptic curve. And because the

powers add like that, it is a very strange elliptic curve, with a

surprising combination of properties. So surprising, in fact, that

it looks wildly unlikely that it can exist at all, as Gerhard Frey

pointed out in 1985.

This observation opens the way to a ‘proof by contradiction’,

what Euclid called ‘reductio ad absurdum’ (reduction to the

absurd). To prove that some statement is true, you begin by

assuming that, on the contrary, it is false. Then you deduce the

logical consequences of this falsity. If the consequences contra-

dict each other or known facts, then your assumption must have

been wrong – so the statement must be true after all. In 1986

Kenneth Ribet pinned this idea down by proving that if Fermat’s

Last Theorem is false, then the associated elliptic curve violates a

conjecture (that is, a plausible but unproved theorem) intro-

duced by the Japanese mathematicians Yutaka Taniyama and

Goro Shimura. This Taniyama–Shimura conjecture, which dates
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from 1955, says that every elliptic curve is associated with a

special class of elliptic functions, called modular functions.

Ribet’s discovery implies that any proof of the Taniyama–

Shimura conjecture automatically proves – by contradiction –

Fermat’s Last Theorem as well. Because the assumed falsity of

Fermat’s Last Theorem tells us that Frey’s elliptic curve exists, but

the Taniyama–Shimura conjecture tells us that it doesn’t.

Unfortunately, the Taniyama–Shimura conjecture was just

that – a conjecture.

Enter Andrew Wiles. When Wiles was a child he heard about

Fermat’s Last Theorem, and decided that when he grew up he

would become a mathematician and prove it. He did become a

mathematician, but by then he had decided that Fermat’s Last

Theorem was much as Gauss had complained – an isolated

question of no particular interest for the mainstream of

mathematics. But Frey’s discovery changed all that. It meant that

Wiles could work on the Taniyama–Shimura conjecture, an

important mainstream problem, and polish off Fermat’s Last

Theorem too.

Now, the Taniyama–Shimura conjecture is very difficult –

that’s why it remained a conjecture for some forty years. But it

has good links to many areas of mathematics, and sits firmly in

the middle of an area where the techniques are very powerful:

elliptic curves. For seven years Wiles worked away in his study,

trying every technique he could think of, striving to prove the

Taniyama–Shimura conjecture. Hardly anybody knew that he

was working on that problem; he wanted to keep it secret.

In June 1993 Wiles gave a series of three lectures at the Isaac

Newton Institute in Cambridge, one of the world’s top

mathematical research centres. Their title was ‘Modular forms,

elliptic curves and Galois representations’, but the experts knew

it must really be about the Taniyama–Shimura conjecture – and,

just possibly, Fermat’s Last Theorem. On day three, Wiles

announced that he had proved the Taniyama–Shimura con-

jecture, not for all elliptic curves, but for a special kind called

‘semistable’.
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Frey’s elliptic curve, if it exists, is semistable. Wiles was telling

his audience that he had proved Fermat’s Last Theorem.

But it wasn’t quite that straightforward. In mathematics you

don’t get credit for solving a big problem by giving a few lectures

in which you say you’ve got the answer. You have to publish

your ideas in full, so that everyone else can check that they are

right. And when Wiles started that process – which involves

getting experts to go over the work in detail before it gets into

print – some logical gaps emerged. He quickly filled most of

them, but one seemed much harder, and it wouldn’t go away. As

rumours spread that the proposed proof had collapsed, Wiles

made one final attempt to shore up his increasingly rickety proof

– and, contrary to most expectations, he succeeded. One final

technical point was supplied by his former student, Richard

Taylor, and by the end of October 1994 the proof was complete.

The rest, as they say, is history.

By developing Wiles’s new methods, the Taniyama–Shimura

conjecture has now been proved for all elliptic curves, not just

semistable ones. And although the result of Fermat’s Last

Theorem is still just a minor curiosity – nothing important rests

on it being true or false – the methods used to prove it have

become a permanent and important addition to the mathemat-

ical armoury.

One question remains. Did Fermat really have a valid proof,

as he claimed in his margin? If he did, it certainly wasn’t the one

that Wiles found, because the necessary ideas and methods

simply did not exist in Fermat’s day. As an analogy: today we

could erect the pyramids using huge cranes, but we can be

confident that however the ancient Egyptians built their

pyramids, they didn’t use modern machinery. Not just because

there is no evidence of such machines, but because the necessary

infrastructure could not have existed. If it had done, the whole

culture would have been different. So the consensus among

mathematicians is that what Fermat thought was a proof

probably had a logical gap that he missed. There are some

plausible but incorrect attempts that would have been feasible in
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his day. But we don’t know whether his proof – if one ever

existed – followed those lines. Maybe – just maybe – there is a

much simpler proof lurking out there in some unexplored realm

of mathematical imagination, waiting for somebody to stumble

into it.* Stranger things have happened............................................
Pythagorean Triples

I can’t really get away without telling you Diophantus’s method

for finding all Pythagorean triples, can I?

OK, here it is. Take any two whole numbers, and form:

. twice their product

. the difference between their squares

. the sum of their squares

Then the resulting three numbers are the sides of a Pythagorean

triangle.

For instance, take the numbers 2 and 1. Then

. twice their product ¼ 26261 ¼ 4

. the difference between their squares ¼ 22 � 12 ¼ 3

. the sum of their squares ¼ 22 þ 12 ¼ 5

and we obtain the famous 3–4–5 triangle. If instead we take

numbers 3 and 2, then

. twice their product ¼ 26362 ¼ 12

. the difference between their squares ¼ 32 � 22 ¼ 5

. the sum of their squares ¼ 32 þ 22 ¼ 13

and we get the next-most-famous 5–12–13 triangle. Taking

numbers 42 and 23, on the other hand, leads to

. twice their product ¼ 2642623 ¼ 1;932

* If you think you’ve found it, please don’t send it to me. I get too
many attempted proofs as it is, and so far – well, just don’t get me
started, OK?
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. the difference between their squares ¼ 422 � 232 ¼ 1;235

. the sum of their squares ¼ 422 þ 232 ¼ 2;293

and no one has ever heard of the 1,235�1,932�2,293 triangle.

But these numbers do work:

1;2352 þ 1;9322 ¼ 1;525;225þ 3;732;624 ¼ 5;257;849

¼ 2;2932

There’s a final twist to Diophantus’s rule. Having worked out the

three numbers, we can choose any other number we like and

multiply them all by that. So the 3–4–5 triangle can be converted

to a 6–8–10 triangle by multiplying all three numbers by 2, or to

a 15–20–25 triangle by multiplying all three numbers by 5. We

can’t get these two triples from the above prescription using

whole numbers. Diophantus knew that............................................
Prime Factoids

Prime numbers are among the most fascinating in the whole of

mathematics. Here’s a Prime Primer.

A whole number bigger than 1 is prime if it is not the product

of two smaller numbers. The sequence of primes begins

2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; . . .

Note that 1 is excluded, by convention. Prime numbers are of

fundamental importance in mathematics because every whole

number is a product of primes – for instance,

2;007 ¼ 3636223

2;008 ¼ 262626251

2;009 ¼ 767641

Moreover (only mathematicians worry about this sort of thing,

but actually it’s kind of important and surprisingly difficult to

prove), there is only one way to achieve this, apart from

rearranging the order of the prime numbers concerned. For
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instance, 2;008 ¼ 251626262, but that doesn’t count as differ-

ent. This property is called ‘unique prime factorisation’.

If you’re worried about 1 here, mathematicians consider it to

be the product of no primes. Sorry, mathematics is like that

sometimes.

The primes seem to be scattered fairly unpredictably. Apart

from 2, they are all odd – because an even number is divisible by

2, so it can’t be prime unless it is equal to 2. Similarly, 3 is the

only prime that is a multiple of 3, and so on.

Euclid proved that there is no largest prime. In other words,

there exist infinitely many primes. Given any prime p, you can

always find a bigger one. In fact, any prime divisor of p!þ 1 will

do the job. Here p! ¼ p6ðp� 1Þ6ðp� 2Þ6 � � �636261, a pro-

duct called the factorial of p. For instance,

7! ¼ 7666564636261 ¼ 5;040:

The largest known prime is another matter, because Euclid’s

method isn’t a practical way to generate new primes explicitly.

As I write, the largest known prime is

232;582;657 � 1

which has 9,808,358 digits when written out in decimal notation

(see page 153).

Twin primes are pairs of primes that differ by 2. Examples are

(3, 5), (5, 7), (11, 13), (17, 19), and so on. The twin primes

conjecture states that there are infinitely many twin primes. This

is widely believed to be true, but has never been proved. Or

disproved. The largest known twin primes, to date, are:

2;003;663;61362195;000 � 1 and 2;003;663;61362195;000 þ 1

with 58,711 digits each.

Nicely does it . . . In 1994 Thomas Nicely was investigating

twin primes by computer, and noticed that his results disagreed

with previous computations. After spending weeks searching for

errors in his program, he traced the problem to a previously

unknown bug in the IntelTM PentiumTM microprocessor chip. At
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that time, the Pentium was the central processing unit of most of

the world’s computers. See

www.trnicely.net/pentbug/bugmail1.html...........................................
A Little-Known Pythagorean Curiosity

It is well known that any two Pythagorean triples can be

combined to yield another one. In fact, if

a2 þ b2 ¼ c2

and

A2 þ B2 ¼ C2

then

ðaA� bBÞ2 þ ðaBþ bAÞ2 ¼ ðcCÞ2

However, there is a lesser-known feature of this method for

combining Pythagorean triples. If you think of it as a kind of

‘multiplication’ for triples, then we can define a triple to be prime

if it is not the product of two smaller triples. Then every

Pythagorean triple is a product of distinct prime Pythagorean

triples; moreover, this ‘prime factorisation’ of triples is essen-

tially unique, except for some trivial distinctions which I won’t

go into here.

It turns out that the prime triples are those for which the

hypotenuse is a prime number of the form 4kþ 1 and the other

two sides are both non-zero, or the hypotenuse is 2 or a prime of

the form 4k� 1 and one of the other sides is zero (a ‘degenerate’

triple).

For instance, the 3–4–5 triple is prime, and so is the 5–12–13

triple, because their hypotenuses are both 4kþ 1 primes. The

0–7–7 triple is also prime. The 33–56–65 triple is not prime – it is

the ‘product’ of the 3–4–5 and 5–12–13 triples.

Just thought you’d like to know............................................
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Digital Century

Place exactly three common mathematical symbols between the

digits

1 2 3 4 5 6 7 8 9

so that the result equals 100. The same symbol can be repeated if

you wish, but each repeat counts towards your limit of three.

Rearranging the digits is not permitted.

Answer on page 266...........................................
Squaring the Square

We all know that a rectangular floor can be tiled with square tiles

of equal size – provided its edges are integer (whole-number)

multiples of the size of the tile. But what happens if we are

required to use square tiles which all have different sizes?

The first ‘squared rectangle’ was published in 1925 by

Zbigniew Morón, using ten square tiles of sizes 3, 5, 6, 11, 17, 19,

22, 23, 24 and 25.

Morón’s first
squared
rectangle.

Not long after, he found a squared rectangle using nine

square tiles with sizes 1, 4, 7, 8, 9, 10, 14, 15 and 18. Can you

arrange these tiles to make a rectangle? As a hint, it has size 32633.

What about making a square out of different square tiles? For
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a long time this was thought to be impossible, but in 1939

Roland Sprague found 55 distinct square tiles that fit together to

make a square. In 1940 four mathematicians (Leonard Brooks,

Cedric Smith, Arthur Stone and William Tutte, then under-

graduates at Trinity College, Cambridge) published a paper

relating the problem to electrical networks – the network

encodes what size the squares are, and how they fit together. This

method led to more solutions.

Willcocks’s squared square with 24 tiles.

In 1948 Theophilus Willcocks found 24 squares that fit

together to make a square. For a while it was thought that no

smaller set would do the job, but in 1962 Adrianus Duijvestijn

used a computer to show that only 21 square tiles are needed,

and this is the minimum number. Their sizes are 2, 4, 6, 7, 8, 9,

11, 15, 16, 17, 18, 19, 24, 25, 27, 29, 33, 35, 37, 42 and 50. Can

you arrange Duijvestijn’s 21 tiles to make a square? As a hint, it has

size 1126112.

Finally, a really hard one: can you tile the infinite plane,
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leaving no gaps, using exactly one tile of each whole number

size: 1, 2, 3, 4, and so on? This problem remained open until

2008, when Frederick and James Henle proved that you can. See

their article ‘Squaring the plane’, American Mathematical Monthly,

volume 115 (2008), pages 3–12.

For further information, see www.squaring.net

Answers on page 267...........................................
Magic Squares

I’m on a bit of a square kick here, so let me mention the most

ancient ‘square’ mathematical recreation of them all. According

to a Chinese myth, the Emperor Yu, who lived in the third

millennium BC, came across a sacred turtle in a tributary of the

Yellow River, with strange markings on its shell. These markings

are now known as the Lo shu (‘Lo river writing’).

The Lo Shu.

The markings are numbers, and they form a square pattern:

4 9 2

3 5 7

8 1 6

Here every row, every column and every diagonal adds to the

same number, 15. A number square with these properties is said

to be magic, and the number concerned is its magic constant.

Usually the square is made from successive whole numbers, 1, 2,

3, 4, and so on, but sometimes this condition is relaxed.
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Dürer’s Melancholia and its magic square.

In 1514 the artist Albrecht Dürer produced an engraving,

‘Melancholia’, containing a 464 magic square (top right corner).

The middle numbers in the bottom row are 15–14, the date of

the work. This square contains the numbers

16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

and has magic constant 34.

Using consecutive whole numbers 1, 2, 3, . . . , and counting

rotations and reflections of a given square as being the same,

there are precisely:

. 1 magic square of size 363

. 880 magic squares of size 464

. 27,5305,224 magic squares of size 565

The number of 666 magic squares is unknown, but has been

estimated by statistical methods to be about 1:7761019.

The literature on magic squares is gigantic, including many

variations such as magic cubes. The website mathworld.wolfram.

com/MagicSquare.html is a good place to look, but there are

plenty of others............................................
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Squares of Squares

Magic squares are so well known that I’m not going to say a lot

about the common ones, but some of the variants are more

interesting. For instance, is it possible to make a magic square

whose entries are all distinct perfect squares? Call this a square of

squares. (Clearly the condition of using consecutive whole

numbers must be ignored!)

We still have no idea whether a 363 square of squares exists.

Near misses include Lee Sallows’s

1272 462 52

22 1132 942

742 822 972

for which all rows, columns, and one diagonal have the same

sum. Another near miss is magic:

3732 2892 5652

360;721 4252 232

2052 5272 222;121

However, only seven entries are square – I’ve marked the

exceptions in bold. It was found by Sallows and (independently)

Andrew Bremner.

In 1770 Euler sent the first 464 square of squares to Joseph-

Louis Lagrange:

682 292 412 372

172 312 792 322

592 282 232 612

112 772 82 492

It has magic constant, 8515.

Christian Boyer has found 565; 666 and 767 squares of
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squares. The 767 square uses squares of consecutive integers

from 02 to 482:

252 452 152 142 442 52 202

162 102 222 62 462 262 422

482 92 182 412 272 132 122

342 372 312 332 02 292 42

192 72 352 302 12 362 402

212 322 22 392 232 432 82

172 282 472 32 112 242 382

...........................................
Ring a-Ring a-Ringroad

The M25 motorway completely encircles London, and in Britain

we drive on the left. So if you travel clockwise round the M25

you stay on the outside carriageway, whereas travelling anti-

clockwise keeps you on the inside carriageway, which is shorter.

But how much shorter? The total length of the M25 is 188 km

(117 miles), so the advantage of being on the inside carriageway

ought to be quite a lot – shouldn’t it?

The M25
motorway.
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Suppose that two cars travel right round the M25, staying in

the outside lane—no, make that two white vans travelling right

round the M25, staying in the outside lane, as they tend to do.

Assume that one is going clockwise and the other anticlockwise,

and suppose (which is not entirely true but makes the problem

specific) that the distance between these two lanes is always 10

metres. Howmuch further does the clockwise van travel than the

anticlockwise one? You may assume that the roads all lie in a flat

plane (which also isn’t entirely true).

Answer on page 267...........................................
Pure v. Applied

Relations between pure and applied mathematicians are based

on trust and understanding. Pure mathematicians do not trust

applied mathematicians, and applied mathematicians do not

understand pure mathematicians............................................
Magic Hexagon

Magic hexagons are like magic squares, but using a hexagon-

shaped arrangement of hexagons, like a chunk of a honeycomb:

Grid for magic hexagon.

Your task is to place the numbers from 1 to 19 in the

hexagons so that any straight line of three, four or five cells, in
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any of the three directions, add up to the same magic constant,

which I can reveal must be 38.

Answer on page 269...........................................
Pentalpha

This ancient geometrical puzzle is easy if you look at it the right

way, and baffling if you don’t.

Follow the rules to
place nine counters.

You have nine counters, to be placed on the circles in a five-

pointed star. Here I’ve numbered the circles to help explain the

solution. In the real game, there aren’t any numbers. Successive

counters must be positioned by placing them in an empty circle,

jumping over an adjacent circle (which may be empty or full) to

land on an empty circle adjacent to the one jumped over, so that

all three circles involved in the move are on the same straight

line. For instance, if circles 7 and 8 are empty, you can place a

counter on 7 and jump over 1 to land on 8. Here 1 can be empty

or full – it doesn’t matter. But you are not allowed to jump 7 over

1 to land on 4 or 5 because now the three circles involved are not

in a straight line.

If you try placing counters at random, you usually run out of

suitable pairs of empty circles before finishing the puzzle.

Answer on page 270...........................................

Pentalpha // 69



Wallpaper Patterns

A wallpaper pattern repeats the same image in two directions:

down the wall and across the wall (or on a slant). The repetition

down the wall comes from the paper being printed in a

continuous roll, using a revolving cylinder to create the pattern.

The repetition across the wall makes it possible to continue the

pattern sideways, across adjacent strips of paper, to cover the

entire wall. A ‘drop’ from one panel to the next causes no

problems, and can actually make it easier to hang the paper.

Wallpaper patterns repeat
in two directions.

The number of possible designs for wallpaper is effectively

infinite. But different designs can have the same underlying

pattern, it’s just that the basic image that gets repeated is

different. For instance, the flower in the design above could be

replaced by a butterfly, or a bird, or an abstract shape. So

mathematicians distinguish essentially different patterns by their

symmetries. What are the different ways in which we can slide

the basic image, or rotate it, or even flip it over (like reflecting it

in a mirror), so that the end result is the same as the start?

For my pattern of flowers, the only symmetries are slides

along the two directions in which the basic image repeats, or

several such slides performed in turn. This is the simplest type of

symmetry, but there are more elaborate ones involving rotations

and reflections as well. In 1924 George Pólya and Paul Niggli

proved that there are exactly 17 different symmetry types of

wallpaper pattern – surprisingly few.
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The 17 types
of wallpaper
pattern.

In three dimensions the corresponding problem is to list all

possible symmetry types of atomic lattices of crystals. Here there

are 230 types. Curiously, that answer was discovered before

anyone solved the much easier two-dimensional version for

wallpaper............................................
How Old Was Diophantus?

A few pages back, in the section on Fermat’s Last Theorem, I

mentioned Diophantus of Alexandria, who lived around AD 250

and wrote a famous book on equations, the Arithmetica. That is

virtually all we know about him, except that a later source tells us

his age – assuming it is authentic. That source says this:

Diophantus’s childhood lasted one-sixth of his life. His beard

grew after one-twelfth more. He married after one-seventh more.

His son was born five years later. The son lived to half his father’s

age. Diophantus died four years after his son. How old was

Diophantus when he died?

Answer on page 271...........................................
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If You Thought Mathematicians were Good at
Arithmetic . . .

Ernst Kummer was a German algebraist, who did some of the best

work on Fermat’s Last Theorem before the modern era. However,

he was poor at arithmetic, so he always asked his students to do

the calculations for him. On one occasion he needed to work out

967. ‘Umm . . . nine times seven is . . . nine times . . . seven . . .

is . . . ’

‘Sixty-one,’ suggested one student. Kummer wrote this on the

blackboard.

‘No, Professor! It should be sixty-seven!’ said another.

‘Come, come, gentlemen,’ said Kummer. ‘It can’t be both. It

must be one or the other.’...........................................
The Sphinx is a Reptile

Well, a rep-tile, which isn’t quite the same thing. Short for

‘replicating tile’, this word refers to a shape that appears –

magnified – when several copies of it are put together. The most

obvious rep-tile is a square.

Four square tiles make
a bigger square.
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However, there are many others, such as these:

More interesting rep-tiles.

A famous rep-tile is the sphinx. Can you assemble four copies

of a sphinx to make a bigger sphinx? You can turn some of the

tiles over if you want.

The sphinx.

Answer on page 271...........................................
Six Degrees of Separation

In 1998 Duncan Watts and Steven Strogatz published a research

paper in the science journal Nature about ‘small-world networks’.

These are networks in which certain individuals are unusually

well-connected. The paper triggered a mass of research in which

the ideas were applied to real networks such as the Internet and

the transmission of disease epidemics.
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A small-world network. The
black individual in the middle is
connected to many others,
unlike the grey individuals.

The story began in 1967 when the psychologist Stanley

Milgram prepared 160 letters with the name of his stockbroker

on the envelope – but no address. Then he ‘lost’ the letters so

that random members of the populace could find them, and, he

hoped, send them on. Many of the letters duly arrived at the

stockbroker’s office, and when they did, they had done so in at

most six steps. This led Milgram to the idea that we are

connected to every other person on the planet by at most five

intermediaries – six degrees of separation.

I was explaining the Nature paper and its background to my

friend Jack Cohen, in the maths common room. Our head of

department walked past, stopped, and said, ‘Nonsense! Jack, how

many steps are there between you and a Mongolian yak herder?’

Jack’s instant response was: ‘One!’ He then explained that the

person in the office next to his was an ecologist who had worked

in Mongolia. This kind of thing happens to Jack, because he is

one of those unusually well-connected people who makes small-

world networks hang together. For example, he causes both me

and my head of department to be only two steps away from a

Mongolian yak herder.

You can explore the small-world phenomenon using the

Oracle of Bacon, at oracleofbacon.org. Kevin Bacon is an actor

who has appeared in a lot of movies. Anyone who has appeared

in the same movie as Kevin has a Bacon number of 1. Anyone who

has appeared in the same movie as anyone with a Bacon number

of 1 has a Bacon number of 2, and so on. If Milgram is right,

virtually every actor (movies being the relevant ‘world’) has a

74 // Six Degrees of Separation



Bacon number of 6 or less. At the Oracle, when you type in an

actor’s name it tells you the Bacon number, and which movies

form the links. For instance,

. Michelle Pfeiffer appeared in Amazon Women on the Moon in

1987 with:

. David Alan Grier, who appeared in The Woodsman in 2004

with:

. Kevin Bacon

so Michelle’s Bacon number is 2.

It’s not easy to find anyone with Bacon number bigger than

2! One of them is

. Hayley Mooy, who appeared in Star Wars: Episode III – Revenge

of the Sith in 2005 with:

. Samuel L. Jackson, who appeared in Snakes on a Plane in 2006

with:

. Rachel Blanchard, who appeared in Where the Truth Lies in

2005 with:

. Kevin Bacon

so Hayley has Bacon number 3.

Mathematicians have their own version of the Oracle of

Bacon, centred on the late Paul Erdős. Erdős wrote more joint

research papers than any other mathematician, so the game goes

the same way but the links are joint papers. My Erdős number is

3, because

. I wrote a joint paper with:

. Marty Golubitsky, who wrote a joint paper with:

. Bruce Rothschild, who wrote a joint paper with:

. Paul Erdős

and no shorter chain exists. One of my former students, who has

written a joint paper with me but with no one else, has Erdős

number 4.

Usually, more people take part in the same movie than co-

author the same mathematics research paper – though I can’t say
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the same about some areas of biology or physics. So you’d expect

bigger Erdős numbers than Bacon numbers, on the whole. All

mathematicians with Erdős number 1 or 2 are listed at

www.oakland.edu/enp...........................................
Trisectors Beware!

Euclid tells us how to bisect an angle – divide it into two equal

parts – and by repeating this method we can divide any given

angle into 4; 8; 16; . . . ; 2n equal parts. But Euclid doesn’t explain

how to trisect an angle – divide it into three equal parts. (Or

quinquisect, five equal parts, or . . . .)

Traditionally, Euclidean constructions are carried out using

only two instruments – an idealised ruler, with no markings

along its edge, to draw a straight line, and an idealised (pair of)

compass(es), which can draw a circle. It turns out that these

instruments are inadequate for trisecting angles, but the proof

had to wait until 1837, when Pierre Wantzel used algebraic

methods to show that no ruler-and-compass trisection of the

angle 608 is possible. Undeterred, many amateurs continue to

seek trisections. So it may be worth explaining why they don’t

exist.

Any point can be constructed approximately, and the

approximation can be as accurate as we wish. To trisect an angle

to an accuracy of, say one-trillionth of a degree is easy – in

principle. The mathematical problem is not about practical

solutions: it is about the existence, or not, of ideal, infinitely

accurate ones. It is also about finite sequences of applications of

ruler and compass: if you allow infinitely many applications,

again any point can be constructed – this time exactly.

The key feature of Euclidean constructions is their ability to

form square roots. Repeating an operation leads to complicated

combinations of square roots of quantities involving square roots

of . . . well, you get the idea. But that’s all you can do with the

traditional instruments.
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Turning now to algebra, we find the coordinates of such

points by starting with rational numbers and repeatedly taking

square roots. Any such number satisfies an algebraic equation of

a very specific kind. The highest power of the unknown that

appears in the equation (called the degree) must be the square, or

the fourth power, or the eighth power . . . That is, the degree

must be a power of 2.

An angle of 608 can be formed from three constructible

points: (0, 0), (1, 0), and ð12 ,
ffiffi
3

p
2 Þ, which lie on the unit circle

(radius 1, with its centre at the origin of the coordinate system).

Trisecting this angle is equivalent to constructing a point (x, y)

where the line at 208 to the horizontal axis crosses this circle.

Using trigonometry and algebra, the coordinate x of this point is

a solution of a cubic equation with rational coefficients. In fact x

satisfies the equation 8x3 � 6x� 1 ¼ 0. But the degree of a cubic is

3, which is not a power of 2. Contradiction – so no trisection is

possible. Yes, you can get as close as you wish, but not spot on.

Trisecting 608 is
equivalent to constructing x.

Trisectors often look for the impossible method even though

they’ve heard of Wantzel’s proof. They say things like ‘I know it’s

impossible algebraically, but what about geometrically?’ But

Wantzel’s proof shows that there is no geometric solution. It uses

algebraic methods to do that, but algebra and geometry are

mutually consistent parts of mathematics.

I always tell would-be trisectors that if they think they’ve

found a trisection, a direct consequence is that 3 is an even

number. Do they really want to go down in history as making

that claim?

If the conditions of the problem are relaxed, many trisections
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exist. Archimedes knew of one that used a ruler with just two

marks along its edge. The Greeks called this kind of technique a

neusis construction. It involves sliding the rule so that the marks

fall on two given curves – here a line and a circle:

How Archimedes
trisected an angle.

...........................................
Langford’s Cubes

The Scottish mathematician C. Dudley Langford was watching

his young son playing with six coloured blocks – two of each

colour. He noticed that the boy had arranged them so that the

two yellow blocks (say) were separated by one block, the two blue

blocks were separated by two blocks, and the two red blocks were

separated by three blocks. Here I’ve used white for yellow, grey

for blue and black for red to show you what I mean:

Langford’s
cubes.

In between the white blocks we find just one block (which

happens to be grey). Between the grey blocks are two blocks (one

black, one white). And between the black blocks are three blocks

(two white and one grey). Langford thought about this and was

able to prove that this is the only such arrangement, except for

its left–right reversal.

He wondered if you could do the same with more colours –

such as four. And he found that again there is only one
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arrangement, plus its reversal. Can you find it? The simplest way

to work on the puzzle is to use playing cards instead of blocks.

Take two aces, two 2’s, two 3’s and two 4’s. Can you lay the cards

in a row to get exactly one card between the two aces, two cards

between the two 2’s, three cards between the two 3’s and four

cards between the two 4’s?

There are no such arrangements with five or six pairs of cards,

but there are 26 of them with seven pairs. In general, solutions

exist if and only if the number of pairs is a multiple of 4 or one

less than a multiple of 4. No formula is known for how many

solutions there are, but in 2005 Michaël Krajecki, Christophe

Jaillet and Alain Bui ran a computer for three months and found

that there are precisely 46,845,158,056,515,936 arrangements

with 24 pairs.

Answer on page 271...........................................
Duplicating the Cube

I’ll briefly mention another cube problem: the third famous

‘geometric problem of antiquity’. It’s nowhere near as well

known as the other two – trisecting the angle and squaring the

circle. The traditional story is that an altar in the shape of a

perfect cube must be doubled in volume. This is equivalent to

constructing a line of length
ffiffiffi
23

p
starting from the rational points

of the plane. The desired length satisfies another cubic equation,

this time the obvious one, x3 � 2 ¼ 0. For the same reason that

trisecting the angle is impossible, so is duplicating the cube, as

Pierre Wantzel pointed out in his 1837 paper. Cube-duplicators

are so rare that you hardly ever come across one.* Trisectors are

ten a penny............................................
* Though we shouldn’t forget Edwin J. Goodwin, whose work on

squaring the circle nearly caused a rumpus in Indiana (page 25).
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Magic Stars

Here is a five-pointed star. It is a magic star because the numbers

on any line of four circles add up to the same total, 24. But it’s

not a very good magic pentacle, because it doesn’t use the

numbers from 1 to 10. Instead, it uses the numbers from 1 to 12

with 7 and 11 missing.

Five-pointed magic star.
Numbers are not consecutive.

It turns out that this is the best you can do with a five-

pointed star. But if you use a six-pointed star, it is possible to

place the numbers 1 to 12 in the circles, using one of each, so

that each line of four numbers has the same total. (As a hint, the

total has to be 26.) And, just to make the puzzle harder, I want

you to make the six outermost numbers add up to 26 as well.

Where do the numbers go?

Write the numbers 1 to 12 in
the circles to make this star
magic.

Answer on page 271...........................................
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Curves of Constant Width

The circle has the same width in any orientation. If you place it

between two parallel lines, it can turn into any position. This is

one reason why wheels are circular, and it’s why circular logs

make excellent rollers.

Is it the only curve like that?

Is the circle the only
curve like this?

Answer on page 272...........................................
Connecting Cables

Can you connect the fridge, cooker and dishwasher to the three

corresponding electrical sockets, using cables that don’t go

through the kitchen walls or any of the three appliances, so that

no two cables cross?

Connect the
appliances to
their sockets
without any
crossings.

In ordinary three-dimensional space this puzzle is a bit

artificial, but in two dimensions it’s a genuine problem, as any

inhabitant of Flatland will tell you. A kitchen with no doors is an

even bigger problem, but there you go.

Answer on page 272...........................................
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Coin Swap

The first diagram shows six silver coins, A, C, E, G, I and K,

and six gold coins, B, D, F, H, J and L. Your job is to move the

coins into the arrangement shown in the second diagram. Each

move must swap one silver coin with one adjacent gold coin;

two coins are adjacent if there is a straight line joining them.

The smallest number of moves that solves this puzzle is known

to be 17. Can you find a 17-move solution?

Move the coins from the first position to the second.

Answer on page 273...........................................
The Stolen Car

Nigel Fenderbender bought a secondhand car for £900 and

advertised it in the local paper for £2,900. A respectable-looking

elderly gentleman dressed as a clergyman turned up at the

doorstep and enquired about the car, and bought it at the asking

price. However, he mistakenly made his cheque out for £3,000,

and it was the last cheque in his chequebook.

Now, Fenderbender had no cash in the house, so he nipped

next door to the local newsagent, Maggie Zine, who was a

friend of his, and got her to change the cheque. He paid the

clergyman £100 change. However, when Maggie tried to pay

the cheque in at the bank, it bounced. In order to pay back the

newsagent, she was forced to borrow £3,000 from another

friend, Honest Harry.

After Fenderbender had repaid this debt as well, he

complained vociferously: ‘I lost £2,000 profit on the car, £100 in
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change, £3,000 repaying the newsagent and another £3,000

repaying Honest Harry. That’s £8,100 altogether!’

How much money had he actually lost?

Answer on page 273...........................................
Space-Filling Curves

We ordinarily think of a curve as being much ‘thinner’ than, say,

the interior of a square. For a long time, mathematicians thought

that since a curve is one-dimensional, and a square is two-

dimensional, it must be impossible for a curve to pass through

every point inside a square.

Not so. In 1890 the Italian mathematician Giuseppe Peano

discovered just such a space-filling curve. It was infinitely long and

infinitely wiggly, but it still fitted the mathematical concept of a

curve – which basically is some kind of bent line. In this case, very

bent. A year later the German mathematician David Hilbert

found another one. These curves are too complicated to draw –

and if you could, you might as well just draw a solid black square

like the left-hand picture. Mathematicians define space-filling

curves using a step-by-step process that introduces more and

more wiggles. At each step, the new wiggles are finer than the

previous ones. The right-hand picture shows the fifth stage of

this process for Hilbert’s curve.

Hilbert’s space-filling curve and an approximation.
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There is an excellent animation showing successive stages of

the construction of the Hilbert curve at en.wikipedia.org/wiki/

Hilbert_curve. Similar curves can fill a solid cube, indeed the

analogue of a cube in any number of dimensions. So examples

like this forced mathematicians to rethink basic concepts, such

as ‘dimension’. Space-filling curves have been proposed as the

basis of an efficient method for searching databases by computer............................................
Compensating Errors

The class had been given a sum to do, involving three positive

whole numbers (‘positive’ here means ‘greater than zero’).

During the break, two classmates compared notes.

‘Oops. I added the three numbers instead of multiplying

them,’ said George.

‘You’re lucky, then,’ said Henrietta. ‘It’s the same answer

either way.’

What were the three numbers? What would they have been if

there had been only two of them, or four of them, again with

their sum equal to their product?

Answer on page 273...........................................
The Square Wheel

We seldom see a square wheel, but that’s not because such a

wheel can’t roll without creating a bumpy ride. Circular wheels

are great on flat roads. For square wheels, you just need a

different shape of road:

A square-
wheeled
bicycle stays
level on this
bumpy road.
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In fact, the correct shape is a cycloid, which is the path traced

by a point on the rim of a circular wheel as it rolls along a flat

surface. The length of each arch of the cycloid has to be the same

as the perimeter of the wheel. It turns out that almost any shape

of wheel will work provided you build the right kind of road for it

to run on. Reinventing the wheel is easy. What counts is

reinventing the road............................................
Why Can’t I Divide by Zero?

In general, any number can be divided by any other number –

except when the number we are dividing by is 0. ‘Division by

zero’ is forbidden; even our calculators put up error messages if

we try it. Why is zero a pariah in the division stakes?

The difficulty is not that we can’t define division by zero. We

could for instance, insist that any number divided by zero gives

42. What we can’t do is make that kind of definition and still

have all the usual arithmetical rules working properly. With this

admittedly very silly definition, we could start from 1=0 ¼ 42 and

apply standard arithmetical rules to deduce that 1 ¼ 4260 ¼ 0.

Before we worry about division by zero, we have to agree on

the rules that we want division to obey. Division is normally

introduced as a kind of opposite to multiplication. What is 6

divided by 2? It is whichever number, multiplied by 2, gives 6.

Namely, 3. So the two statements

6=2 ¼ 3 and 6 ¼ 263

are logically equivalent. And 3 is the only number that works

here, so 6/2 is unambiguous.

Unfortunately, this approach runs into major problems when

we try to define division by zero. What is 6 divided by 0? It is

whichever number, multiplied by 0, gives 6. Namely . . . uh. Any

number multiplied by 0 makes 0; you can’t get 6.

So 6/0 is out, then. So is any other number divided by 0,

except – perhaps – 0 itself. What about 0/0?
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Usually, if you divide a number by itself, you get 1. So we

could define 0=0 to be 1. Now 0 ¼ 160, so the relation with

multiplication works. Nevertheless, mathematicians insist that

0/0 doesn’t make sense. What worries them is a different

arithmetical rule. Suppose that 0=0 ¼ 1. Then

2 ¼ 261 ¼ 26ð0=0Þ ¼ ð260Þ=0 ¼ 0=0 ¼ 1

Oops.

The main problem here is that since any number multiplied

by 0 makes 0, we deduce that 0/0 can be any number whatsoever.

If the rules of arithmetic work, and division is the opposite of

multiplication, then 0/0 can take any numerical value. It’s not

unique. Best avoided, then.

Hang on – if you divide by zero, don’t you get infinity?

Sometimes mathematicians use that convention, yes. But

when they do, they have to check their logic rather carefully,

because ‘infinity’ is a slippery concept. Its meaning depends on

the context, and in particular you can’t assume that it behaves

like an ordinary number.

And even when infinity makes sense, 0/0 still causes head-

aches............................................
River Crossing 2 – Marital Mistrust

Remember Alcuin’s letter to Charlemagne (page 20) and the

wolf–goat–cabbage puzzle? The same letter contained a more

complicated river-crossing puzzle, which may have been

invented by the Venerable Bede fifty or so years earlier. It came to

prominence in Claude-Gaspar Bachet’s seventeenth-century

compilation Pleasant and Delectable Problems, where it was posed

as a problem about jealous husbands who did not trust their

wives in the company of other men.

It goes like this. Three jealous husbands with their wives must

cross a river, and find a boat with no boatman. The boat can

carry only two of them at once. How can they all cross the river
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so that no wife is left in the company of other men without her

husband being present?

Both men and women may row. All husbands are jealous in

the extreme: they do not trust their unaccompanied wives to be

with another man, even if the other man’s wife is also present.

Answer on page 273...........................................
Wherefore Art Thou Borromeo?

Three rings can be linked together in such a way that if any one of

them is ignored, the remaining two would pull apart. That is, no

two of the rings are linked, only the full set of three. This

arrangement is generally known as the Borromean rings, after the

Borromeo family in Renaissance Italy, who used it as a family

emblem. However, the arrangement is much older, and can be

found in seventh-century Viking relics. Even in Renaissance Italy,

it goes back to the Sforza family; Francesco Sforza permitted the

Borromeos to use the rings in their coat of arms as a way of

thanking them for their support during the defence of Milan.

Emblem of the Borromeo family and its use (bottom, left of
centre) in their coat of arms.

On Isola Bella, one of three islands in Lake Maggiore owned

by the Borromeo family, there is a seventeenth-century baroque
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palazzo built by Vitaliano Borromeo. Here the three-ring emblem

can be found in numerous locations, indoors and out. A careful

observer (such as a topologist) will discover that the rings

depicted there are linked in several topologically distinct ways,

only one of which has the key feature that no two rings are

linked but all three are:

Four variations on the Borromean rings from the family palazzo.

The first version in the picture is the canonical one; it is inset

into a floor and also appears in the garden. The second appears

on the entrance tickets and on some of the flowerpots. A family

crest at the top of the main staircase has the third pattern. Black

and white seashells on the floor of a grotto under the palazzo

form the fourth pattern. For further information, visit

www.liv.ac.uk/~spmr02/rings/

Look at the four versions and explain why they are

topologically different.

Can you find an analogous arrangement of four rings, such

that if any ring is removed the remaining three can be pulled

apart, but the full set of four rings cannot be disentangled?

Answer on page 274...........................................
Percentage Play

Alphonse bought two bicycles. He sold one to Bettany for £300,

making a loss of 25%, and one to Gemma, also for £300, making

a profit of 25%. Overall, did he break even? If not, did he make a

profit or a loss, and by how much?

Answer on page 275...........................................
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Kinds of People

There are 10 kinds of people in the world: those who understand

binary numerals, and those who don’t............................................
The Sausage Conjecture

This is one of my favourite unsolved mathematical problems,

and it is absolutely weird, believe me.

As a warm-up, suppose you are packing a lot of identical

circles together in the plane, and ‘shrink-wrapping’ them by

surrounding the lot with the shortest curve you can. With 7

circles, you could try a long ‘sausage’:

Sausage shape and wrapping.

However, suppose that you want to make the total area inside

the curve – circles and the spaces between them – as small as

possible. If each circle has radius 1, then the area of the sausage is

27.141. But there is a better arrangement of the circles, a

hexagon with a central circle, and now the area is 25.533, which

is smaller:

Hexagonal shape
and wrapping.

Curiously, if you use identical spheres instead of circles, and

shrink-wrap them with the surface of smallest possible area, then

for 7 spheres the long sausage shape leads to a smaller total
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volume than the hexagonal arrangement. This sausage pattern

gives the smallest volume inside the wrapping for any number of

spheres up to 56. But with 57 spheres or more, the minimal

arrangements are more rotund.

Less intuitive still is what happens in spaces of four or more

dimensions. The arrangement of 4-dimensional spheres whose

wrapping gives the smallest 4-dimensional ‘volume’ is a sausage

for any number of spheres up to 50,000. It’s not a sausage for

100,000 spheres, though. So the packing of smallest volume uses

very long thin strings of spheres until you get an awful lot of

them. Nobody knows the precise number at which 4-dimen-

sional sausages cease to be the best.

The really fascinating change probably comes at five dimen-

sions. You might imagine that in five dimensions sausages are

best for, say, up to 50 billion spheres, but then something more

rotund gives a smaller 5-dimensional volume; and for six

dimensions the same sort of thing holds up to 29 squillion

spheres, and so on. But in 1975 Laszlo Fejes Tóth formulated the

sausage conjecture, which states that for five or more dimensions,

the arrangement of spheres that occupies the smallest volume

when shrink-wrapped is always a sausage – however large the

number of spheres may be.

In 1998 Ulrich Betke, Martin Henk and Jörg Wills proved that

Tóth was right for any number of dimensions greater than or

equal to 42. To date, that’s the best we know............................................
Tom Fool’s Knot

This trick lets you tie a decorative knot while everybody watches.

When you challenge them to do the same, they fail. No matter

howmany times you demonstrate the method, they seem unable

to copy it successfully.

90 // Tom Fool’s Knot



Stages in tying the Tom Fool’s knot.

Take a length of soft cord about two metres long and hold it

across your palms as in the first diagram, with your hands about

half a metre apart. Let the two long ends hang down to

counterbalance the weight of the length between the palms.

Now bring your hands slowly together, all the while twiddling

the fingers of the right hand. The finger twiddles have nothing at

all to do with the method of tying the knot, but they distract

spectators from the important moves, all of which happen with

the left hand. Make the movements of your right hand seem as

purposeful as you can.

With the left hand, first slide your thumb under the cord and

pick it up, as in the second diagram. Then rapidly withdraw your

fingers and replace them behind the hanging end, as shown by

the arrow in the second diagram, to reach the position of the

third figure. Without stopping, flip your fingers under the

horizontal length of cord, as shown by the arrow in the third

diagram, and withdraw your thumb. You should now have

reached the position shown in the fourth diagram. Finally, use

the tips of the fingers of each hand to grasp the end of cord

hanging from the other hand, as in the fifth diagram. Holding on

to the cord, pull the hands apart, and the lovely symmetrical

knot of the final diagram appears.

Practice the method until you can perform it as a single,

rhythmic movement. The knot unties if you just pull on the ends
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of the cord, so you can tie it over and over again. The trick

becomes more mysterious every time you do it............................................
New Merology

Let him that hath understanding count the number of the beast; for it

is the number of a man; and his number is Six hundred threescore and

six. Revelation of St John 13:18

Or maybe not. The Oxyrhynchus Papyri – ancient documents

found at Oxyrhynchus in Upper Egypt – include a fragment of

the Book of Revelation from the third or fourth century which

contains the earliest known version of some sections. The

number that this papyrus assigns to the Beast is 616, not 666. So

much for barcodes being symbols of evil.* No matter, for this

puzzle is not about the Beast. It is about an idea that its inventor,

Lee Sallows, calls ‘new merology’. Let me make it clear that his

proposal is not serious, except as a mathematical problem.{

The traditional method for assigning numbers to names,

known as gematria, sets A ¼ 1, B ¼ 2 up to Z ¼ 26. Then you add

up all the numbers corresponding to the letters in the name. But

there are lots of different systems of this kind, and lots of

alphabets. Sallows suggested a more rational method based on

words that denote numbers. For instance, with the numbering

just described, the word ONE becomes 15þ 14þ 5 ¼ 34. However,

* The middle of a supermarket barcode bears lines that would
represent the number 666, except that they have an entirely
different function – they are ‘guard bars’ that help to correct
errors. Each guard bar has the binary pattern 101, which on a
barcode represents 6. Whence 666. Except that genuine barcode
numbers actually have seven binary digits, so that 6 is 1010000,
and . . . oh well. This led some American fundamentalists to
denounce barcodes as the work of the Devil. Since it now seems
that the number of the Beast is actually 616, even the numerology
is dodgy.

{ I really shouldn’t need to say this–but given the previous footnote
. . .
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the number corresponding to ONE surely ought to be 1. Worse,

no English number word denotes its numerological total, a

property we will call ‘perfect’.

Sallows wondered what happens if you assign a whole

number to each letter, so that as many as possible of the number-

words ONE, TWO, and so on are perfect. To make the problem

interesting, different letters must be given different values. So

you get a whole pile of equations like

OþNþ E ¼ 1

TþWþO ¼ 2

TþHþ Rþ Eþ E ¼ 3

in algebraic unknowns O, N, E, T, W, H, R, . . . . And you must

solve them in integers, all distinct.

The equation OþNþ E ¼ 1 tells us that some of the numbers

have to be negative. Suppose, for example, that E ¼ 1 and N ¼ 2.

Then the equation for ONE tells us that O ¼ �2, and similar

equations with other number-words imply that I ¼ 4; T ¼ 7 and

W ¼ �3. To make THREE perfect we must assign values to H and

R. If H ¼ 3, then R has to be �9. FOUR involves two more new

letters, F and U. If F ¼ 5, then U = 10. Now, Fþ Iþ Vþ E ¼ 5

leads to V ¼ �5. Since SIX contains two new letters, we try

SEVEN first, which tells us that S ¼ 8. Then we can fill in X from

SIX, getting X ¼ �6. The equation for EIGHT leads to G ¼ �7.

Now all the number names from ONE to TEN are perfect.

The only extra letter in ELEVEN and TWELVE is L.

Remarkably, L ¼ 11 makes them both perfect. But

TþHþ Iþ Rþ Tþ Eþ EþN ¼ 7þ 3þ 4þ ð�9Þ þ 7þ 1þ 1þ 2,

which is 16, so we get stuck at this point.

In fact, we always get stuck at this point: if THIRTEEN is

perfect, then

THREEþ TEN ¼ THIRTEEN
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and we can remove common letters from both sides. This leads

to E ¼ I, violating the rule that different letters get different

values.

However, we can go the other way and try to make ZERO

perfect as well as ONE to TWELVE. Using the choices above,

Zþ Eþ RþO ¼ 0 leads to Z ¼ 10, but that’s the same as U.

Can you find a different assignment of positive or negative

whole-number values to letters, so that all words from ZERO to

TWELVE are perfect?

Answer on page 275...........................................
Numerical Spell

Lee Sallows also applied new merology to magic, inventing the

following trick. Select any number on the board shown below.

Spell it out, letter by letter. Add together the corresponding

numbers (subtracting those on black squares, adding those on

white squares). The result will always be plus or minus the

number you chose. For instance, TWENTY-TWO leads to

20� 25� 4� 2þ 20þ 11þ 20� 25þ 7 ¼ 22

Board for Lee Sallows’s
magic trick.

...........................................
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Spelling Mistakes

‘Thare are five mistukes im this centence.’

True or false?

Answer on page 275...........................................
Expanding Universe

The starship Indefensible starts from the centre of a spherical

universe of radius 1,000 light years, and travels radially at a speed

of one light year per year – the speed of light. How long will it

take to reach the edge of the universe? Clearly, 1,000 years.

Except that I forgot to tell you that this universe is expanding.

Every year, the universe expands its radius instantly by precisely

1,000 light years. Now, how long will it take to reach the edge?

(Assume that the first such expansion happens exactly one year

after the Indefensible starts its voyage, and successive expansions

occur at intervals of exactly one year.)

It might seem that the Indefensible never gets to the edge,

because that is receding faster than the ship can move. But at the

instant that the universe expands, the ship is carried along with

the space in which it sits, so its distance from the centre expands

proportionately. To make these conditions clear, let’s look at

what happens for the first few years.

In the first year the ship travels 1 light year, and there are 999

light years left to traverse. Then the universe instantly expands

to a radius of 2,000 light years, and the ship moves with it. So it is

then 2 light years from the centre, and has 1,998 left to travel.

In the next year it travels a further light year, to a distance of

3 light years, leaving 1,997. But then the universe expands to a

radius of 3,000 light-years, multiplying its radius by 1.5, so the

ship ends up 4.5 light years from the centre, and the remaining

distance increases to 2,995.5 light years.

Does the ship ever get to the edge? If so, how long does it

take?
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Hint: it will be useful to know that the nth harmonic number

Hn ¼ 1þ 1

2
þ 1

3
þ 1

4
þ � � � þ 1

n

is approximately equal to

log nþ g

where g is Euler’s constant, which is roughly 0.577 215664 9.

Answer on page 276...........................................
What is the Golden Number?

The ancient Greek geometers discovered a useful idea which they

called ‘division in extreme and mean ratio’. By this they meant a

line AB being cut at a point P, so that the ratios AP : AB and

PB : AP are the same. Euclid used this construction in his work on

regular pentagons, and I’ll shortly explain why. But first, since

nowadays we have the luxury of replacing ratios by numbers,

let’s turn the geometric recipe into algebra. Take PB to be of

length 1, and let AP ¼ x, so that AB ¼ 1þ x. Then the required

condition is

1þ x

x
¼ x

1

so that x2 � x� 1 ¼ 0. The solutions of this quadratic equation

are

f ¼ 1þ 5
p

2
¼ 1:618 034 . . .

and

1� f ¼ 1� 5
p

2
¼ �0:618 034 . . .

Here the symbol f is the Greek letter phi. The number f, known

as the golden number, has the pleasant property that its reciprocal

is

1

f
¼ �1þ 5

p

2
¼ 0:618 034 . . . ¼ f� 1
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The golden number, in its geometric form as ‘division in extreme

and mean ratio’, was the starting point for the Greek geometry of

regular pentagons and anything associated with these, such as

the dodecahedron and the icosahedron. The connection is this:

if you draw a pentagon with sides equal to 1, then the long

diagonals have length f:

How f appears in a
regular pentagon.

The golden ratio is often associated with aesthetics; in

particular, the ‘most beautiful’ rectangle is said to be one whose

sides are in the ratio f : 1. The actual evidence for such

statements is weak. Moreover, various methods of presenting

numerical data exaggerate the role of the golden ratio, so that it

is possible to ‘deduce’ the presence of the golden ratio in data

that bear no relation to it. Similarly, claims that famous ancient

buildings such as the Great Pyramid of Khufu or the Parthenon

were designed using the golden ratio are probably unfounded. As

with all numerology, you can find whatever you are looking for if

you try hard enough. (Thus ‘Parthenon’ has 8 letters, ‘Khufu’ has

5, and 8=5 ¼ 1:6 – very close to f.*)

Another common fallacy is to suppose that the golden ratio

occurs in the spiral shell of a nautilus. This beautiful shell is – to

great accuracy – a type of spiral called a logarithmic spiral. Here

each successive turn bears a fixed ratio to the previous one. There

is a spiral of this kind for which this ratio equals the golden ratio.

But the ratio observed in the nautilus is not the golden ratio.

* Well, actually ‘Parthenon’ has 9 letters, but for a moment I had
you there. And 1.8 is a lot closer to f than many alleged instances
of this number.
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The nautilus shell is a
logarithmic spiral but its
growth rate is not the
golden number.

The term ‘golden number’ is relatively modern. According to

the historian Roger Herz-Fischler, it was first used by Martin

Ohm in his book 1835 Die Reine Elementar-Mathematik (‘Pure

Elementary Mathematics’) as Goldene Schnitt (‘golden section’). It

does not go back to the ancient Greeks.

The golden number is closely connected with the famous

Fibonacci numbers, which come next............................................
What are the Fibonacci Numbers?

Many people met the Fibonacci numbers for the first time in Dan

Brown’s bestseller The Da Vinci Code. These numbers have a long

and glorious mathematical history, which has very little overlap

with anything mentioned in the book.

It all began in 1202 when Leonardo of Pisa published the

Liber Abbaci, or ‘Book of Calculation’, an arithmetic text which

concentrated mainly on financial computations and promoted

the use of Hindu-Arabic numerals – the forerunner of today’s

familiar system, which uses just ten digits, 0 to 9, to represent all

possible numbers.

One of the exercises in the book seems to have been

Leonardo’s own invention. It goes like this: ‘A man put a pair of

rabbits in a place surrounded on all sides by a wall. How many

pairs of rabbits are produced from that pair in a year, if it is

supposed that every month each pair produces a new pair, which

from the second month onwards becomes productive?’
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Family tree of of
Fibonacci’s rabbits.

Say that a pair is mature if it can produce offspring, and

immature if not.

At the start, month 0, we have 1 mature pair.

At month 1 this pair produces an immature pair, so we have 1

mature pair and 1 immature pair – 2 altogether.

At month 2 the mature pair produces another immature pair;

the immature pair matures but produces nothing. So now we

have 2 mature pairs and 1 immature pair – 3 in total.

At month 3 the 2 mature pairs produce 2 more immature

pairs; the immature pair matures but produces nothing. So now

we have 3 mature pairs and 2 immature pairs – 5 in total.

At month 4 the 3 mature pairs produce 3 more immature

pairs; the 2 immature pairs mature but produce nothing. So now

we have 5 mature pairs and 3 immature pairs – 8 in total.

Continuing step by step, we obtain the sequence

1; 2; 3; 5; 8; 13; 21; 34; 55; 89; 144; 233; 377

for months 0, 1, 2, 3, . . . , 12. Here each term after the second is

the sum of the previous two. So the answer to Leonardo’s

question is 377.

Some time later, probably in the eighteenth century,

Leonardo was given the nickname Fibonacci – ‘son of Bonaccio’.

This name was more catchy than Leonardo Pisano Bigollo, which

is what he used, so nowadays he is generally known as Leonardo

Fibonacci, and his sequence of numbers is known as the Fibonacci

sequence. The usual modern convention is to put the numbers 0,

1 in front, giving

0; 1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; 144; 233; 377
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although sometimes the initial 0 is omitted. The symbol for the

nth Fibonacci number is Fn, starting from F0 ¼ 0.

The Fibonacci numbers as such are pretty useless as a model

of the growth of real rabbit populations, although more general

processes of a similar kind, called Leslie models, are used to

understand the dynamics of animal and human populations.

Nevertheless, the Fibonacci numbers are important in several

areas of mathematics, and they also turn up in the natural world

– though less widely than is often suggested. Extensive claims

have been made for their occurrence in the arts, especially

architecture and painting, but here the evidence is mostly

inconclusive, except when Fibonacci numbers are used deliber-

ately – for instance, in the architect Le Corbusier’s ‘modulor’

system.

The Fibonacci numbers have strong connections with the

golden number, which you’ll recall is

f ¼ 1þ 5
p

2
¼ 1:618 034 . . .

Ratios of successive Fibonacci numbers, such as 8/5, 13/8, 21/13,

and so on become ever closer to f as the numbers get bigger. Or,

as mathematicians would say, > Fnþ1=Fn tends to f as n tends to

infinity. For instance, 377=233 ¼ 1:618 025 . . . . In fact, for integers

of a given size, these Fibonacci fractions provide the best possible

approximations to the golden number. There is even a formula

for the nth Fibonacci number in terms of f:

Fn ¼ fn � ð1� fÞn
5

p

and this implies that Fn is the integer closest to fn= 5
p

.

If you make squares whose sides are the Fibonacci numbers

they fit together very tidily, and you can draw quarter-circles in

them to create an elegant Fibonacci spiral. Because Fn is close to

fn, this spiral is very close to a logarithmic spiral, which grows in

size by f every quarter-turn. Contrary to many claims, this spiral
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is not the same shape as the Nautilus shell’s spiral. Look at the

picture on page 98 – the Nautilus is more tightly wound.

Fibonacci spiral.

However, there is a genuine – and striking – occurrence of

Fibonacci numbers in living creatures, namely plants. The

flowers of surprisingly many species have a Fibonacci number of

petals. Lilies have 3 petals, buttercups have 5, delphiniums have

8, marigolds have 13, asters have 21, and most daisies have 34, 55

or 89. Sunflowers often have 55, 89 or 144.

Other numbers of petals do occur, but much less frequently.

Mostly these are twice a Fibonacci number, or a power of 2.

Sometimes numbers are from the related Lucas sequence:

1; 3; 4; 7; 11; 18; 29; 47; 76; 123; . . .

where again each number after the second is the sum of the

previous two, but the start of the sequence is different.

There seem to be genuine biological reasons for these

numbers to occur. The strongest evidence can be seen in the

heads of daisies and sunflowers, when the seeds have formed.

Here the seeds arrange themselves in spiral patterns:
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The head of
a daisy.

In the daisy illustrated, the eye sees one family of spirals that

twist clockwise, and a second family of spirals that twist

anticlockwise. There are 21 clockwise spirals and 34 anti-

clockwise spirals – successive Fibonacci numbers. Similar

numerical patterns, also involving successive Fibonacci numbers,

occur in pine cones and pineapples.

The precise reasons for Fibonacci numerology in plant life are

still open to debate, though a great deal is understood. As the tip

of the plant shoot grows, long before the flowers appear, regions

of the shoot form tiny bumps, called primordia, from which the

seeds and other key parts of the flower eventually grow.

Successive primordia form at angles of 137.58 – or 222.58 if we

subtract this from 3608, measuring it the other way round. This is

a fraction f� 1 of the full circle of 3608. This occurrence of the

golden ratio can be predicted mathematically if we assume that

the primordia are packed as efficiently as possible. In turn,

efficient packing is a consequence of elastic properties of the

growing shoot – the forces that affect the primordia. The genetics

of the plant is also involved. Of course, many real plants do not

quite follow the ideal mathematical pattern. Nevertheless, the

mathematics and geometry associated with the Fibonacci

sequence provide significant insights into these numerical

features of plants............................................
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The Plastic Number

The plastic number is a little-known relative of the famous

golden number. We’ve just seen how the Fibonacci numbers

create a spiralling system of squares, related to the golden

number. There is a similar spiral diagram for the plastic number,

but composed of equilateral triangles. In the diagram below, the

initial triangle is marked in black and successive triangles spiral

in a clockwise direction: the spiral shown is again roughly

logarithmic. In order to make the shapes fit, the first three

triangles all have side 1. The next two have side 2, and then the

numbers go 4, 5, 7, 9, 12, 16, 21, and so on.

Padovan spiral.

Again there is a simple rule for finding these numbers,

analogous to that for Fibonacci numbers: each number in the

sequence is the sum of the previous number but one, together

with the one before that. For example,

12 ¼ 7þ 5; 16 ¼ 9þ 7; 21 ¼ 12þ 9

This pattern follows from the way the triangles fit together. If Pn

is the nth Padovan number (starting from P0 ¼ P1 ¼ P2 ¼ 1),

then

Pn ¼ Pn�2 þ Pn�3

The Plastic Number // 103



The first twenty numbers in the sequence are:

1; 1; 1; 2; 2; 3; 4; 5; 7; 9; 12; 16;

21; 28; 37; 49; 65; 86; 114; 151

I call this sequence the Padovan numbers because the architect

Richard Padovan told me about them, although he denies any

responsibility. Curiously, ‘Pádova’ is the Italian form of ‘Padua’,

and Fibonacci was from Pisa, roughly a hundred miles away. I am

tempted to rename the Fibonacci numbers ‘Pisan numbers’ to

reflect the Italian geography, but as you can see I managed to

resist.

The plastic number, which I denote by p, is roughly 1.324718.

It is related to the Padovan numbers in the same way that the

golden number is related to the Fibonacci numbers. That is,

ratios of successive Padovan numbers, such as 49/37 or 151/114,

give good approximations to the plastic number. The pattern of

the sequence of Padovan numbers leads to the equation

p3 � p� 1 ¼ 0, and p is the unique real solution of this cubic

equation. The Padovan sequence increases much more slowly

than the Fibonacci sequence because p is smaller than f. There

are many interesting patterns in the Padovan sequence. For

example, the diagram shows that 21 ¼ 16þ 5, because triangles

adjacent along a suitable edge have to fit together; similarly,

16 ¼ 12þ 4; 12 ¼ 9þ 3, and so on. Therefore

Pn ¼ Pn�1 þ Pn�5

which is an alternative rule for deriving further terms of the

sequence. This equation implies that p5 � p4 � 1 ¼ 0, and it is not

immediately obvious that p, defined as a solution of a cubic

equation, must also satisfy this quintic (fifth-degree) equation............................................
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Family Occasion

‘It was a wonderful party,’ said Lucilla to her friend Harriet.

‘Who was there?’

‘Well – there was one grandfather, one grandmother, two

fathers, two mothers, four children, three grandchildren, one

brother, two sisters, two sons, two daughters, one father-in-law,

one mother-in-law and one daughter-in-law.’

‘Wow! Twenty-three people!’

‘No, it was less than that. A lot less.’

What is the smallest size of party that is consistent with

Lucilla’s description?

Answer on page 277...........................................
Don’t Let Go!

Topology is a branch of mathematics in which two shapes are

‘the same’ if one can be continuously deformed into the other.

So you can bend, stretch, and shrink, but not cut. This ancient

topological chestnut still has many attractions – in particular,

not everyone has seen it before. What you have to do is pick up a

length of rope, with the left hand holding one end and the right

hand holding the other, and tie a knot in the rope without letting

go of the ends.

Answer on page 277...........................................
Theorem: All Numbers are Interesting

Proof: For a contradiction, suppose not. Then there is a smallest

uninteresting number. But being the smallest one singles it out

among all other numbers, making it special, hence interesting –

contradiction............................................
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Theorem: All Numbers are Boring

Proof: For a contradiction, suppose not. Then there is a smallest

non-boring number.

And your point is—?...........................................
The Most Likely Digit

If you look at a list of numerical data, and count how often a

given digit turns up as the first digit in each entry, which digit is

most likely? The obvious guess is that every digit has the same

chance of occurring as any other. But it turns out that for most

kinds of data, this is wrong.

Here’s a typical data set – the areas of 18 islands in the

Bahamas. I’ve given the figures in square miles and in square

kilometres, for reasons I’ll shortly explain.

Island Area (sq mi) Area (sq km)
....................................................................................................................................................................

Abaco 649 1681

Acklins 192 497

Berry Islands 2300 5957

Bimini Islands 9 23

Cat Island 150 388

Crooked and Long Cay 93 241

Eleuthera 187 484

Exuma 112 290

Grand Bahama 530 1373

Harbour Island 3 8

Inagua 599 1551

Long island 230 596

Mayaguana 110 285

New Providence 80 207

Ragged Island 14 36

Rum Cay 30 78

San Salvador 63 163

Spanish Wells 10 26
....................................................................................................................................................................
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For the square mile data, the number of times that a given first

digit (shown in brackets) occurs goes like this:

ð1Þ7 ð2Þ 2 ð3Þ 2 ð4Þ 0 ð5Þ 2 ð6Þ 2 ð7Þ 0 ð8Þ 1 ð9Þ 2
and 1 wins hands down. In square kilometres, the corresponding

numbers are

ð1Þ 4 ð2Þ 6 ð3Þ 2 ð4Þ 2 ð5Þ 2 ð6Þ 0 ð7Þ 1 ð8Þ 1 ð9Þ 0
and now 2 wins, but only just.

In 1938 the physicist Frank Benford observed that for long

enough lists of data, the numbers encountered by physicists and

engineers are most likely to start with the digit 1 and least likely

to start with 9. The frequency with which a given initial digit

occurs – that is, the probability that the first digit takes a given

value – decreases as the digits increase from 1 to 9. Benford

discovered empirically that the probability of encountering n as

the first decimal digit is

log10 ðnþ 1Þ � log10 ðnÞ
where the subscript 10 means that the logarithms are to base ten.

(The value n = 0 is excluded because the initial digit is by

definition the first non-zero digit.) Benford called this formula the

law of anomalous numbers, but nowadays it’s usually known as

Benford’s law.

Theoretical frequencies according to Benford’s law.
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For the Bahama Island data, the frequencies look like this:

Observed frequencies for the areas of the Bahama Islands,
compared with Benford’s theoretical ideal.

There are some differences between theory and reality, but

the data sets here are fairly small, so we would expect that. Even

with only 18 numbers, there is a strong prevalence of 1’s and 2’s

– which, according to Benford’s law, should between them occur

just over half the time.

Benford’s formula is far from obvious, but a little thought

shows that the nine frequencies are unlikely to be identical.

Think of a street of houses, numbered from 1 upwards. The

probability of a given digit coming first varies considerably with

the number of houses on the street. If there are nine houses, each

digit occurs equally often. But, if there are 19, then the initial

digit is 1 for houses 1 and 10–19, a frequency of 11/19, or more

than 50%. As the length of the street increases, the frequency

with which a given first digit occurs wanders up and down in a

complicated but computable manner. The nine frequencies are

the same onlywhen the number of houses is 9, 99, 999, and so on.

Benford’s formula is distinguished by a beautiful property: it is

scale-invariant. If you measure the areas of Bahamian islands in

square miles or square kilometres, if you multiply house numbers
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by 7 or 93, then – provided you have a big enough sample – the

same law applies. In fact, Benford’s Law is the only scale-invariant

frequency law. It is unclear why nature prefers scale-invariant

frequencies, but it seems reasonable that the natural world should

not be affected by the units in which humans choose to measure

it.

Tax collectors use Benford’s law to detect fake figures in tax

forms, because people who invent fictitious numbers tend to use

the same initial digits equally often. Probably because they think

that’s what should happen for genuine figures!...........................................
Why Call It a Witch?

Maria Agnesi was born in 1718 and died in 1799. She was the

daughter of a wealthy silk merchant, Pietro Agnesi (often

wrongly said to have been a professor of mathematics at

Bologna), and the eldest of his 21 children. Maria was

precocious, and published an essay advocating higher education

for women when she was nine years old. The essay was actually

written by one of her tutors, but she translated it into Latin and

delivered it from memory to an academic gathering in the

garden of the family home. Her father also arranged for her to

debate philosophy in the presence of prominent scholars and

public figures. She disliked making a public spectacle of herself

and asked her father for permission to become a nun. When he

refused, she extracted an agreement that she could attend church

whenever she wished, wear simple clothing, and be spared from

all public events and entertainments.
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Maria Gaetana Agnesi.

From that time on, she focused on religion and mathematics.

She wrote a book on differential calculus, printed privately

around 1740. In 1748 she published her most famous work,

Instituzioni Analitiche ad Uso Della Gioventù Italiana (‘Analytical

Institutions for the Use of the Youth of Italy’). In 1750 Pope

Benedict XIV invited her to become professor of mathematics at

the University of Bologna, and she was officially confirmed in

the role, but she never actually attended the university because

this would not have been in keeping with her humble lifestyle.

As a result, some sources say she was a professor and others say

she wasn’t. Was she, or wasn’t she? Yes.

There is a famous curve, called the ‘witch of Agnesi’, which

has the equation

xy2 ¼ a2ða� xÞ
where a is a constant. The curve looks remarkably unlike a witch –

it isn’t even pointy:

Witch of Agnesi.
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So how did this strange name get attached to the curve?

Fermat was the first to discuss this curve, in about 1700.

Maria Agnesi wrote about the curve in her book Instituzione

Analitiche. The word ‘witch’ was a mistake in translation. In 1718

Guido Grandi named the curve ‘versoria’, a Latin term for a rope

that turns a sail, because that’s what it looked like. In Italian this

term became ‘versiera’, which is what Agnesi called it. But John

Colson, who translated various mathematics books into English,

mistook ‘la versiera’ for ‘l’aversiera’, meaning ‘the witch’.

It could have been worse. Another meaning is ‘she-devil’............................................
Möbius and His Band

There are some pieces of mathematical folklore that you really

should be reminded about, even though they’re ‘well known’ –

just in case. An excellent example is the Möbius band.

Augustus Möbius was a German mathematician, born 1790,

died 1868. He worked in several areas of mathematics, including

geometry, complex analysis and number theory. He is famous for

his curious surface, the Möbius band. You can make a Möbius

band by taking a strip of paper, say 2 cm wide and 20 cm long,

bending it round until the ends meet, then twisting one end

through 1808, and finally gluing the ends together. For

comparison, make a cylinder in the same way, omitting the

twist.

Möbius band.

Cylindrical band.
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The Möbius band is famous for one surprising feature: it has

only one side. If an ant crawls around on a cylindrical band, it

can cover only half the surface – one side of the band. But if an

ant crawls around on the Möbius band, it can cover the entire

surface. The Möbius band has only one side.

You can check these statements by painting the band. You

can paint the cylinder so that one side is red and the other is

blue, and the two sides are completely distinct, even though they

are separated only by the thickness of the paper. But if you start

to paint the Möbius band red, and keep going until you run out

of band to paint, the whole thing ends up red.

In retrospect, this is not such a surprise, because the 1808

twist connects each side of the original paper strip to the other. If

you don’t twist before gluing, the two sides stay separate. But

until Möbius (and a few others) thought this one up, mathe-

maticians didn’t appreciate that there are two distinct kinds of

surface: those with two sides, and those with one. This turned

out to be important in topology. And it showed how careful you

have to be about making ‘obvious’ assumptions.

There are lots of Möbius band recreations. Here are three.

. If you cut the cylindrical band along the middle with scissors,

it falls apart into two cylindrical bands. What happens if you

try this with a Möbius band?

. Repeat, but this time make the cut about one-third of the way

across the width of the band. Now what happens to the

cylinder, and to the band?

. Make a band like a Möbius band but with a 3608 twist. How

many sides does it have? What happens if you cut it along the

middle?

The Möbius band is also known as a Möbius strip, but this can

lead to misunderstandings, as in a Limerick written by science

fiction author Cyril Kornbluth:
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A burleycue dancer, a pip

Named Virginia, could peel in a zip;

But she read science fiction

and died of constriction

Attempting a Möbius strip.

Amore politically correct Möbius limerick, which gives away one

of the answers, is:

A mathematician confided

That a Möbius strip is one-sided.

You’ll get quite a laugh

if you cut it in half,

For it stays in one piece when divided.

Answers on page 277...........................................
Golden Oldie

Why did the chicken cross the Möbius band?

To get to the other . . . um . . ............................................
Three More Quickies

(1) If five dogs dig five holes in five days, how long does it take

ten dogs to dig ten holes? Assume that they all dig at the same

rate all the time and all holes are the same size.

(2) A woman bought a parrot in a pet-shop. The shop assistant,

who always told the truth, said, ‘I guarantee that this parrot will

repeat every word it hears.’ A week later, the woman took the

parrot back, complaining that it hadn’t spoken a single word.

‘Did anyone talk to it?’ asked the suspicious assistant. ‘Oh, yes.’

What is the explanation?

(3) The planet Nff-Pff in the Anathema Galaxy is inhabited by

precisely two sentient beings, Nff and Pff. Nff lives on a large
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continent, in the middle of which is an enormous lake. Pff lives

on an island in the middle of the lake. Neither Nff nor Pff can

swim, fly or teleport: their only form of transport is to walk on

dry land. Yet each morning, one walks to the other’s house for

breakfast. Explain.

Answers on page 277...........................................
Miles of Tiles

Bathroom walls and kitchen floors provide everyday examples of

tiling patterns, using real tiles, plastic or ceramic. The simplest

pattern is made from identical square tiles, fitted together like

the squares of a chessboard. Over the centuries, mathematicians

and artists have discovered many beautiful tilings, and mathe-

maticians have gone a stage further by seeking all possible tilings

with particular features.

For instance, exactly three regular polygons tile the entire

infinite plane – that is, identical tiles of that shape cover the

plane without overlaps or gaps. These polygons are the

equilateral triangle, the square and the hexagon:

The three regular polygons that tile the plane.

We can be confident that no other regular polygon tiles the

plane, by thinking about the angles at which the edges of the

tiles meet. If several tiles meet at a given point, the angles

involved must add to 3608. So the angle at the corner of a tile is

3608 divided by a whole number, say 360/m. Asm gets larger, this

angle gets smaller. In contrast, as the number of sides of a regular

polygon increases, the angle at each corner gets bigger. The effect
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of this is to ‘sandwich’ m within very narrow limits, and this in

turn restricts the possible polygons.

The details go like this. When m ¼ 1, 2, 3, 4, 5, 6, 7, and so on,

360/m takes the values 360, 180, 120, 90, 72, 60, 513
7, and so on.

The angle at the corner of a regular n-gon, for n = 3, 4, 5, 6, 7, and

so on, is 60, 90, 108, 120, 1284
7, and so on. The only places where

these lists coincide are when m ¼ 3, 4, and 6; here n ¼ 6, 4 and 3.

Actually, this proof as stated has a subtle flaw. What have I

forgotten to say?

The most striking omission from my list is the regular

pentagon, which does not tile the plane. If you try to fit regular

pentagonal tiles together, they don’t fit. When three of them

meet at a common point, the total angle is 361088 ¼ 3248, less

than 3608. But if you try to make four of them meet, the total

angle is 461088 ¼ 4328, which is too big.

Irregular pentagons can tile the plane, and so can innumer-

able other shapes. In fact, 14 distinct types of convex pentagon

are known to tile the plane. It is probable, but not yet proved,

that there are no others. You can find all 14 patterns at

www.mathpuzzle.com/tilepent.html

mathworld.wolfram.com/PentagonTiling.html

The mathematics of tilings has important applications in

crystallography, where it governs how the atoms in a crystal can

be arranged, and what symmetries can occur. In particular,

crystallographers know that the possible rotational symmetries

of a regular lattice of atoms is tightly constrained. There are

2-fold, 3-fold, 4-fold and 6-fold symmetries – meaning that the

arrangement of atoms looks identical if the whole thing is

rotated through 1
2,

1
3,

1
4 or

1
6 of a full turn (3608). However,

5-fold symmetries are impossible – just as the regular pentagon

cannot tile the plane.

There the matter stood until 1972, when Roger Penrose

discovered a new type of tiling, using two types of tile, which he

called kites and darts:

Miles of Tiles // 115



A kite (left) and dart (right). The matching rules require the thick
and thin arcs to meet at any join – see the pictures below.

These shapes are derived from the regular pentagon, and the

associated tilings are required to obey certain ‘matching rules’

where several tiles meet, to avoid simple repetitive patterns.

Under these conditions, the two shapes can tile the plane, but

not by forming a repetitive lattice pattern. Instead, they form a

bewildering variety of complicated patterns. Precisely two of

these, called the star and sun patterns, have exact fivefold

rotational symmetry.

The two fivefold-symmetric Penrose tilings. Left: star pattern;
right: sun pattern. Tinted lines illustrate the matching rules.
Black lines are edges of tiles.

It then turned out that nature knows this trick. Some

chemical compounds can form ‘quasicrystals’ using Penrose

patterns for their atoms. These forms of matter are not regular
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lattices, but they can occur naturally. So Penrose’s discovery

changed our ideas about natural arrangements of atoms in

crystal-like structures.

The detailed mathematics and crystallography are too

complicated to describe here. To find out more, go to:

en.wikipedia.org/wiki/Penrose_tiling

Answers on page 278...........................................
Chaos Theory

If you want your friends to accept you as a ‘rocket scientist’, you

have to be able to spout about chaos theory. You will casually

mention the butterfly effect, and then you get to talk about

where Pluto (no longer a planet but a mere dwarf planet) will be

in 200 million years’ time, and how really good dishwashers

work.

Chaos theory is the name given by the media to an important

new discovery in dynamical systems theory – the mathematics of

systems that change over time according to specific rules. The

name refers to a surprising and rather counterintuitive type of

behaviour known as deterministic chaos. A system is called

deterministic if its present state completely determines its future

behaviour; if not, the system is called stochastic or random.

Deterministic chaos – universally shortened to ‘chaos’ – is

apparently random behaviour in a deterministic dynamical

system. At first sight, this seems to be a contradiction in terms,

but the issues are quite subtle, and it turns out that some features

of deterministic systems can behave randomly.

Let me explain why.

You may remember the bit in Douglas Adams’s The Hitch

Hiker’s Guide to the Galaxy that parodies the concept of

determinism. No, really, you do – remember the supercomputer

Deep Thought? When asked for the answer to the Great Question

of Life, the Universe and Everything, it ruminates for five million
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years, and finally delivers the answer as 42. The philosophers

then realise that they didn’t actually understand the question,

and an even greater computer is given the task of finding it.

Deep Thought is the literary embodiment of a ‘vast intellect’

envisaged by one of the great French mathematicians of the

eighteenth century, the Marquis de Laplace. He observed that

the laws of nature, as expressed mathematically by Isaac Newton

and his successors, are deterministic, saying that: ‘An intellect

which at a certain moment knew all forces that set nature in

motion, and all positions of all items of which nature is

composed, if this intellect were also vast enough to submit these

data to analysis, it would embrace in a single formula the

movements of the greatest bodies of the universe and those of

the tiniest atom; for such an intellect nothing would be

uncertain and the future just like the past would be present

before its eyes.’

In effect, Laplace was telling us that any deterministic system

is inherently predictable – in principle, at least. In practice,

however, we have no access to a Vast Intellect of the kind he had

in mind, so we can’t carry out the calculations that are needed to

predict the system’s future. Well, maybe for a short period, if

we’re lucky. For example, modern weather forecasts are fairly

accurate for about two days, but a ten-day forecast is often badly

wrong. (When it isn’t, they’ve got lucky.)

Chaos raises another objection to Laplace’s vision: even if his

Vast Intellect existed, it would have to know ‘all positions of all

items’ with perfect accuracy. In a chaotic system, any uncertainty

about the present state grows very rapidly as time passes. So we

quickly lose track of what the system will be doing. Even if this

initial uncertainty first shows up in the millionth decimal place

of some measurement – with the previous 999,999 decimal

places absolutely correct – the predicted future based on one

value for that millionth decimal place will be utterly different

from a prediction based on some other value.

In a non-chaotic system such uncertainties grow fairly

slowly, and very long-term predictions can be made. In a chaotic
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system, inevitable errors in measuring its state now mean that its

state a short time ahead may be completely uncertain.

A (slightly artificial) example may help to clarify this effect.

Suppose that the state of some system is represented by a real

number – an infinite decimal – between 0 and 10. Perhaps its

current value is 5.430874, say. To keep the maths simple,

suppose that time passes in discrete intervals – 1, 2, 3, and so on.

Let’s call these intervals ‘seconds’ for definiteness. Further,

suppose that the rule for the future behaviour is this: to find the

‘next’ state – the state one second into the future – you take the

current state, multiply by 10, and ignore any initial digit that

would make the result bigger than 10. So the current value

5.430 874 becomes 54.308 74, and you ignore the initial digit 5 to

get the next state, 4.308 74. Then, as time ticks on, successive

states are:

5:430 874

4:308 74

3:0874

0:874

8:74

7:4

and so on.

Now suppose that the initial measurement was slightly

inaccurate, and should have been 5.430 824 – differing in the

fifth decimal place. In most practical circumstances, this is a very

tiny error. Now the predicted behaviour would be:

5:430824

4:30824

3:0824

0:824

2:4

See how that 2 moves one step to the left at each step – making

the error ten times as big each time. After a mere 5 seconds, the

Chaos Theory // 119



first prediction of 7.4 has changed to 2.4 – a significant

difference.

If we had started with a million-digit number, and changed

the final digit, it would have taken a million seconds for the

change to affect the predicted first digit. But a million seconds is

only 111
2 days. And most mathematical schemes for predicting

the future behaviour of a system work with much smaller

intervals of time – thousandths or millionths of seconds.

If the rule for moving one time-step into the future is

different, this kind of error may not grow as quickly. For

example, if the rule is ‘divide the number by 2’, then the effect of

such a change dies away as we move further and further into the

future. So what makes a system chaotic, or not, is the rule for

forecasting its next state. Some rules exaggerate errors, some

filter them out.

The first person to realise that sometimes the error can grow

rapidly – that the system may be chaotic, despite being

deterministic – was Henri Poincaré, in 1887. He was competing

for a major mathematical prize. King Oscar II of Norway and

Sweden offered 2,500 crowns to anyone who could calculate

whether the solar system is stable. If we wait long enough, will

the planets continue to follow roughly their present orbits, or

could something dramatic happen – such as two of them

colliding, or one being flung away into the depths of interstellar

space?

This problem turned out to be far too difficult, but Poincaré

managed to make progress on a simpler question – a hypothet-

ical solar system with just three bodies. The mathematics, even

in this simplified set-up, was still extraordinarily difficult. But

Poincaré was up to the task, and he convinced himself that this

‘three-body’ system sometimes behaved in an irregular, unpre-

dictable manner. The equations were deterministic, but their

solutions were erratic.

He wasn’t sure what to do about that, but he knew it must be

true. He wrote up his work, and won the prize.
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Complicated
orbits for
three bodies
moving
under
gravity.

And that was what everyone thought until recently. But in

1999 the historian June Barrow-Green discovered a skeleton in

Poincaré’s closet. The published version of his prizewinning

paper was not the one he submitted, not the one that won the

prize. The version he submitted – which was printed in a major

mathematical journal – claimed that no irregular behaviour

would occur. Which is the exact opposite of the standard story.

Barrow-Green discovered that shortly after winning the prize,

an embarrassed Poincaré realised he had blundered. He withdrew

the winning memoir and paid for the entire print run of the

journal to be destroyed. Then he put his error right, and the

official published version is the corrected one. No one knew that

there had been a previous version until Barrow-Green discovered

a copy tucked away among the archives of the Mittag-Leffler

Institute in Stockholm.

Anyway, Poincaré deserves full credit as the first person to

appreciate that deterministic mathematical laws do not always

imply predictable, regular behaviour. Another famous advance

was made by the meteorologist Edward Lorenz in 1961. He was

running a mathematical model of convection currents on his

computer. The machines available in those days were very slow

and cumbersome compared with what we have now – your

mobile phone is a far more powerful computer than the top

research machine of the 1960s. Lorenz had to stop his computer

in the middle of a long calculation, so he printed out all the
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numbers it had found. Then he went back several steps, input the

numbers at that point, and restarted the calculation. The reason

for backtracking was to check that the new calculation agreed

with the old one, to eliminate errors when he fed the old figures

back in.

It didn’t.

At first the new numbers were the same as the old ones, but

then they started to differ. What was wrong? Eventually Lorenz

discovered that he hadn’t typed in any wrong numbers. The

difference arose because the computer stored numbers to a few

more decimal places than it printed out. So what it stored as

2.371 45, say, was printed out as 2.371. When he typed that

number in for the second run, the computer began calculating

using 2.371 00, not 2.37145. The difference grew – chaotically –

and eventually became obvious.

When Lorenz published his results, he wrote: ‘One meteor-

ologist remarked that if the theory were correct, one flap of a

(Left) Initial conditions for eight weather forecasts, apparently
identical but with tiny differences. (Right) The predicted
weather a week later – the initial differences have grown
enormously. Italian weather is more predictable than British.
[Courtesy of the European Medium Range Weather Forecasting
Centre, Reading.]
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seagull’s wings could change the course of weather for ever.’ The

objection was intended as a put-down, but we now know that

this is exactly what happens. Weather forecasters routinely make

a whole ‘ensemble’ of predictions, with slightly different initial

conditions, and then take a majority vote on the future, so to

speak.

Before you rush out with a shotgun, I must add that there are

billions of seagulls, and we don’t get to run the weather twice.

What we end up with is a random selection from the range of

possible weathers that might have happened instead.

Lorenz quickly replaced the seagull by a butterfly, because

that sounded better. In 1972 he gave a lecture with the title ‘Does

the flap of a butterfly’s wings in Brazil set off a tornado in Texas?’

The title was invented by Philip Merilees when Lorenz failed to

provide one. Thanks to this lecture, the mathematical point

concerned became known as the butterfly effect. It is a

characteristic feature of chaotic systems, and it is why they are

unpredictable, despite being deterministic. The slightest change

to the current state of the system can grow so rapidly that it

changes the future behaviour. Beyond some relatively small

‘prediction horizon’, the future must remain mysterious. It may

be predetermined, but we can’t find out what has been

predetermined, except by waiting to see what happens. Even a

big increase in computer speed makes little difference to this

horizon, because the errors grow so fast.

For weather, the prediction horizon is about two days ahead.

For the solar system as a whole, it is far longer. We can predict

that in 200 million years’ time, Pluto will still be in much the

same orbit as it is today; however, we have no idea on which side

of the Sun it will be by then. So some features are predictable,

others are not.

Although chaos is unpredictable, it is not random. This is the

whole point. There are hidden ‘patterns’, but you have to know

how to find them. If you plot the solutions of Lorenz’s model in

three dimensions, they form a beautiful, complicated shape
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called a strange attractor. If you plotted random data that way,

you’d just get a fuzzy mess.

The Lorenz attractor, a geometric representation of Lorenz’s
calculations.

Chaos may seem a useless phenomenon, on the grounds that

it prevents practical predictions. Even is this objection were

correct, chaos would still exist. The real world is not obliged to

behave in ways that are convenient for humans. As it happens,

there are ways to make use of chaos. For a time, a Japanese

company marketed a chaotic dishwasher, with two rotary arms

spraying water on its contents. The resulting irregular spray

cleaned the dishes better than the regular spray from a single

rotating arm would have done.

And, of course, a dishwasher based on chaos theory was

obviously very scientific and advanced. The marketing people

must have loved it............................................
Après-le-Ski

The little-known Alpine village of Après-le-Ski is situated in a

deep mountain valley with vertical cliffs on both sides. The cliffs

are 600 metres high on one side and 400 metres high on the

other. A cable car runs from the foot of each cliff to the top of the
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other cliff, and the cables are perfectly straight. At what height

above the ground do the two cables cross?

Find the height
of the crossing.

Answer on page 278...........................................
Pick’s Theorem

Here is a lattice polygon: a polygon whose vertices lie on the

points of a square lattice. Assuming that the points are spaced at

intervals of one unit, what is the area of the polygon?

A lattice polygon.

There’s a wonderfully simple way to find such areas, however

complicated the polygon may be – by using Pick’s theorem. It was

proved by Georg Pick in 1899. For any lattice polygon, the area A

can be calculated from the number of boundary points B (grey)

and interior points I (black) by the formula

A ¼ 1
2Bþ I� 1

Here B ¼ 20 and I ¼ 8, so the area is 1
2620þ 8� 1 ¼ 17 square

units.
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What is the area of the lattice polygon in the second

diagram?

Find the area.

Answer on page 279...........................................
Mathematical Prizes

There is no Nobel Prize in mathematics, but there are several

equally prestigious prizes and a vast range of smaller ones,

among them:

Fields Medal

The Fields Medal was instituted by the Canadian mathematician

John Charles Fields and was first awarded in 1936. Every four

years the International Mathematical Union selects for the award

up to four of the world’s leading research mathematicians, who

must be under 40 years old. The prize consists of a gold medal

and a small sum of money – currently around $13,500 – but is

considered equivalent to a Nobel Prize in prestige.

Abel Prize

In 2001 the Norwegian government commemorated the 200th

anniversary of the birth of Niels Henrik Abel – one of the all-time

greats of mathematics – with a new prize. Each year, one or more

mathematicians share a prize in the region of $1,000,000, which

is comparable to the sum that Nobel Prize winners receive. The

King of Norway presents the award at a special ceremony.
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Shaw Prize

Sir Run Run Shaw, a prominent figure in Hong Kong’s media and

a long-standing philanthropist, established an annual prize for

three areas of science: astronomy, life sciences and medicine, and

mathematics. The total value awarded each year is $1,000,000,

and there is also a medal. The first Shaw Prize was awarded in

2002.

Clay Millennium Prizes

The Clay Mathematics Institute in Cambridge, Massachusetts,

founded by Boston businessman Landon T. Clay and Lavinia D.

Clay, offers seven prizes, each of $1,000,000, for the definitive

solution of seven major open problems. These ‘Millennium Prize

Problems’ were selected to represent some of the biggest

challenges facing mathematicians. For the record, they are:

. The Birch and Swinnerton-Dyer Conjecture in algebraic

number theory.

. The Hodge Conjecture in algebraic geometry.

. The existence of solutions, valid for all time, to the Navier–

Stokes equations of fluid dynamics.

. The P = NP? problem in computer science.

. The Poincaré Conjecture in topology.

. The Riemann Hypothesis in complex analysis and the theory

of prime numbers.

. The mass gap hypothesis and associated issues for the Yang–

Mills equations in quantum field theory.

None of the prizes has yet been awarded, but the Poincaré

Conjecture has now been proved. The main breakthrough was

made by Grigori Perelman, and many details were clarified by

other mathematicians. For details of the seven problems, see

www.claymath.org/millennium/

King Faisal International Prize

Between 1977 and 1982 the King Faisal Foundation instituted

prizes for service to Islam, Islamic studies, Arabic literature,

medicine and science. The science prize is open to, and has been
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won by, mathematicians. The winner receives a certificate, a gold

medal and SR 750 000 ($200,000).

Wolf Prize

Since 1978 this prize has been awarded by the Wolf Foundation,

set up by Ricardo Wolf and his wife Francisca Subirana Wolf. It

covers five areas of science: agriculture, chemistry, mathematics,

medicine and physics. The prize consists of a diploma and

$100,000.

Beal Prize

In 1993 Andrew Beal, a Texan with a passion for number theory,

was led to conjecture that if ap þ bq ¼ cr, where a, b, c, p, q and r

are positive integers, and p, q and r are all greater than 2, then a, b

and c must have a common factor. In 1997 he offered a prize,

later increased to $100,000, for a proof or disproof............................................
Why No Nobel for Maths?

Why didn’t Alfred Nobel set up a mathematics prize? There’s a

persistent story that Nobel’s wife had an affair with the Swedish

mathematician Gosta Mittag-Leffler, so Nobel hated mathemat-

icians. But there’s a problem with this theory, because Nobel

never married. Some versions of the story replace the hypothet-

ical wife with a fiancée or a mistress. Nobel may have had a

mistress – a Viennese lady called Sophie Hess – but there’s no

evidence that she had anything to do with Mittag-Leffler.

An alternative theory holds that Mittag-Leffler, who became

quite wealthy himself, did something to annoy Nobel. Since

Mittag-Leffler was the leading Swedish mathematician of the

time, Nobel realised that he was very likely to win a prize for

mathematics, and decided not to set one up. However, in 1985

Lars Gårding and Lars Hörmander noted that Nobel left Sweden

in 1865, to live in Paris, and seldom returned – and in 1865

Mittag-Leffler was a young student. So there was little opportu-

nity for them to interact, which casts doubt on both theories.
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It’s true that late in Nobel’s life, Mittag-Leffler was chosen to

negotiate with him about leaving to the Stockholm Högskola

(which later became the University) a significant amount of

money in his will, and this attempt eventually failed – but

presumably Mittag-Leffler wouldn’t have been chosen if he’d

already offended Nobel. In any case, Mittag-Leffler wasn’t likely

to win a mathematical Nobel if one existed – there were plenty of

more prominent mathematicians around. So it seems more likely

that it simply never occurred to Nobel to award a prize for

mathematics, or that he considered the idea and rejected it, or

that he didn’t want to spend even more cash.

Despite this, several mathematicians and mathematical

physicists have won the prize for work in other areas – physics,

chemistry, physiology/medicine, even literature. They have also

won the ‘Nobel’ in economics – the Prize in Economic Sciences

in Memory of Alfred Nobel, established by the Sveriges Riksbank

in 1968............................................
Is There a Perfect Cuboid?

It is easy to find rectangles whose sides and diagonals are whole

numbers – this is the hoary old problem of Pythagorean

triangles, and it has been known since antiquity how to find all

of them (page 58). Using the classical recipe, it is not too hard to

find a cuboid – a box with rectangular sides – such that its sides,

and the diagonals of all its faces, are whole numbers. The first set

of values given below achieves this. But what no one has yet been

able to find is a perfect cuboid – one in which the ‘long diagonal’

between opposite corners of the cuboid is also a whole number.
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Make all lengths
integers.

With the notation in the diagram, and bearing Pythagoras in

mind, we have to find a, b and c so that all four of the numbers

a2 þ b2; a2 þ c2; b2 þ c2 and a2 þ b2 þ c2 are perfect squares – equal,

respectively, to p2; q2; r2 and s2. The existence of such numbers

has neither been proved nor disproved, but some ‘near misses’

have been found:

a ¼ 240; b ¼ 117; c ¼ 44; p ¼ 267; q ¼ 244; r ¼ 125;

but s is not an integer

a ¼ 672; b ¼ 153; c ¼ 104; q ¼ 680; r ¼ 185; s ¼ 697;

but p is not an integer

a ¼ 18;720; b ¼ 211;773;121; c ¼ 7;800; p ¼ 23;711;

q ¼ 20;280; r ¼ 16;511; s ¼ 24;961; but b is not an integer

If there is a perfect cuboid, it involves big numbers: it has been

proved that the smallest edge is at least 232 ¼ 4;294;967;296............................................
Paradox Lost

In mathematical logic, a paradox is a self-contradictory statement

– the best known is ‘This sentence is a lie.’ Another is Bertrand

Russell’s ‘barber paradox’. In a village there is a barber who

shaves everyone who does not shave themselves. So who shaves

the barber? Neither ‘the barber’ nor ‘someone else’ is logically

acceptable. If it is the barber, then he shaves himself – but we are

told that he doesn’t. But if it’s someone else, then the barber does
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not shave himself . . . but we are told that he shaves all such

people, so he does shave himself.

In the real world, there are plenty of get-outs (are we talking

about shaving beards here, or legs, or what? Is the barber a

woman? Can such a barber actually exist anyway?) But in

mathematics, a more carefully stated version of Russell’s paradox

ruined the life’s work of Gottlob Frege, who attempted to base

the whole of mathematics on set theory – the study of collections

of objects, and how these can be combined to form other

collections.

Here’s another famous (alleged) paradox:

Protagoras was a Greek lawyer who lived and taught in the

fifth century BC. He had a student, and it was agreed that the

student would pay for his teaching after he had won his first case.

But the student didn’t get any clients, and eventually Protagoras

threatened to sue him. Protagoras reckoned that he would win

either way: if the court upheld his case, the student would be

required to pay up, but if Protagoras lost, then by their

agreement the student would have to pay anyway. The student

argued exactly the other way round: if Protagoras won, then by

their agreement the student did not have to pay, but if Protagoras

lost, the court would have ruled that the student did not have to

pay.

Is this a genuine logical paradox or not?

Answer on page 279...........................................
When Will My MP3 Player Repeat?

You have 1,000 songs on your MP3 player. If it plays songs ‘at

random’, how long would you expect to wait before the same

song is repeated?

It all depends on what ‘at random’ means. The leading MP3

player on the market ‘shuffles’ songs just like someone shuffling

a pack of cards. Once the list has been shuffled, all songs are
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played in order. If you don’t reshuffle, it will take 1,001 songs to

get a repeat. However, it is also possible to pick a song at random,

and keep repeating this procedure without eliminating that

song. If so, the same song might – just – come up twice in a row.

I’ll assume that all songs appear with the same probability,

though some MP3 players bias the choice in favour of songs you

play a lot.

You’ve probably met the same problem with birthdays

replacing songs. If you ask people their birthday, one at a time,

then on average how many do you have to ask to get a repeat?

The answer is 23, remarkably small. There is a second, super-

ficially similar problem: how many people should there be at a

party so that the probability that at least two share a birthday is

bigger than 1
2? Again the answer is 23. In both calculations we

ignore leap years and assume that any particular birthday occurs

with probability 1/365. This isn’t quite accurate, but it simplifies

the sums. We also assume that all individuals have statistically

independent birthdays, which would not be the case if, say, the

party included twins.

I’ll solve the second birthday problem, because the sums are

easier to understand. The trick is to imagine the people entering

the room one at a time, and to work out, at each stage, the

probability that all birthdays so far are different. Subtract the

result from 1 and you get the probability that at least two are

equal. So we want to continue allowing people to enter until the

probability that all birthdays are different drops below 1
2.

When the first person enters, the probability that their

birthday is different from that of anyone else present is 1,

because nobody else is present. I’ll write that as the fraction

365

365

because it tells us that out of the 365 possible birthdays, all 365

have the required outcome.

When the second person enters, their birthday has to be
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different, so there are now only 364 choices out of 365. So the

probability we want is now

365

365
6

364

365

When the third person enters, they have only 363 choices, and

the probability of no duplication so far is

365

365
6

364

365
6

363

365

The pattern should now be clear. After k people have entered, the

probability that all k birthdays are distinct is

365

365
6

364

365
6

363

365
6 � � �6 365� kþ 1

365

and we want the first k for which this is less than 1
2. Each fraction,

other than the first, is smaller than 1, so the probability decreases

as k increases. Direct calculation shows that when k ¼ 22 the

fraction equals 0.524 305, and when k is 23 it equals 0.492 703.

So the required number of people is 23.

This number seems surprisingly small, which may be because

we confuse the question with a different one: how many people

do you have to ask for the probability that one of them has the

same birthday as you to be bigger than 1
2? The answer to that is

much bigger – in fact, it’s 253.

The same calculation with 1,000 songs on an MP3 player

shows that if each song is chosen at random then you have to

play a mere 38 songs to make the probability of a repeat bigger

than 1
2. The average number of songs you have to play to get a

repeat is 39 – slightly more.

These sums are all very well, but they don’t provide much

insight. What if you had a million songs? It’s a big sum – a

computer can do it, though. But is there a simpler answer? We

can’t expect an exact formula, but we ought to be able to find a
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good approximation. Let’s say we have n songs. Then it turns out

that on average we have to play approximately

ð12pÞ
p

n
p ¼ 1:2533 n

p

songs to get a repeat (of some song already played, not necessarily

the first one). To make the probability of a repeat greater than 1
2,

we have to play approximately

ðlog 4Þp
n

p

songs, which is

1:1774 n
p

This is about 6% smaller.

Both numbers are proportional to the square root of n, which

grows much more slowly than n. This is why we get quite small

answers when n is large. If you did have a million songs on your

MP3 player, then on average you would have to play only 1,253

of them to get a repeat (the square root of a million is 1,000). And

to make the probability of a repeat greater than 1
2, you would

have to play approximately 1,177 of them. The exact answer,

according to my computer, is 1,178............................................
Six Pens

Farmer Hogswill has run into another mathematico-agricultural

problem. He had carefully assembled 13 identical fence panels to

create 6 identical pens for his rare-breed Alexander-horned pigs.

But during the night some antisocial person stole one of his

panels. So now he needs to use 12 fence panels to create 6

identical pens. How can he achieve this? All 12 panels must be

used.
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13 panels
making 6 pens.

Answer on page 280...........................................
Patented Primes

Because of their importance in encryption algorithms, prime

numbers have commercial significance. In 1994 Roger Schlafly

obtained US Patent 5,373,560 on two primes. The patent states

them as hexadecimal (base-16) numbers, but I’ve converted

them into decimal. They are:

7;994;412;097;716;110;548;127;211;733;331;600;522;933;

776;757;046;707;649;963;673;962;686;200;838;432;950;239;

103;981;070;728;369;599;816;314;646;482;720;706;826;018;

360;181;196;843;154;224;748;382;211;019

and

103;864;912;054;654;272;074;839;999;186;936;834;171;066;

194;620;139;675;036;534;769;616;693;904;589;884;931;513;

925;858;861;749;077;079;643;532;169;815;633;834;450;952;

832;125;258;174;795;234;553;238;258;030;222;937;772;878;

346;831;083;983;624;739;712;536;721;932;666;180;751;292;

001;388;772;039;413;446;493;758;317;344;413;531;957;900;

028;443;184;983;069;698;882;035;800;332;668;237;985;846;

170;997;572;388;089

He did this to publicise deficiencies in the US patent system.

Legally, you can’t use these numbers without Schlafly’s

permission. Hmmm . . ............................................
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The Poincaré Conjecture

Towards the end of the nineteenth century, mathematicians

succeeded in finding all possible ‘topological types’ of surfaces.

Two surfaces have the same topological type if one of them can

be continuously deformed into the other. Imagine that the

surface is made from flexible dough. You can stretch it, squeeze

it, twist it – but you can’t tear it, or squash different bits

together.

To keep the story simple, I’ll assume that the surface has no

boundary, that it’s orientable (two-sided, unlike the Möbius

band) and that it’s of finite extent. The nineteenth-century

mathematicians proved that every such surface is topologically

equivalent to a sphere, a torus, a torus with two holes, a torus

with three holes, and so on.

Sphere. Torus. Two-holed torus.

‘Surface’ here really does refer only to the surface. A

topologist’s sphere is like a balloon – an infinitely thin sheet of

rubber. A torus is shaped like an inner tube for a tyre (for those of

you who know what an inner tube is). So the ‘dough’ I just

mentioned is really a very thin sheet, not a solid lump.

Topologists call a solid sphere a ‘ball’.

To achieve their classification of all surfaces, the topologists

had to characterise them ‘intrinsically’, without reference to

any surrounding space. Think of an ant living on the surface,

ignorant of any surrounding space. How can it work out which

surface it inhabits? By 1900 it was understood that a good way

to answer such questions is to think about closed loops in the

surface, and how these loops can be deformed. For example, on
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a sphere (by which I mean just the surface, not the solid

interior) any closed loop can be continuously deformed to a

point – ‘shrunk’. For example, the circle running round the

equator can be gradually moved towards the south pole,

becoming smaller and smaller until it coincides with the pole

itself:

How to shrink a loop on
a sphere continuously to
a point.

In contrast, every surface that is not equivalent to a sphere

contains loops, which cannot be deformed to points. Such loops

‘pass through a hole’, and the hole prevents them from being

shrunk. So the sphere can be characterised as the only surface on

which any closed loop can be shrunk to a point.

Observe, however, that the ‘hole’ that we see in a picture is

not actually part of the surface. By definition, it’s a place where

the surface isn’t. If we think intrinsically, we can’t talk sensibly

about holes if we try to visualise them in the usual manner. The

ant who lives on the surface and knows no other universe can’t

see that his torus has a dirty great hole in it – any more than we

can look along a fourth dimension. So although I’m using the

word ‘hole’ to explain why the loop can’t be shrunk, a

topological proof runs along different lines.

The Poincaré Conjecture // 137



On all other
surfaces, loops
can get stuck.

In 1904 Henri Poincaré was trying to take the next step, and

understand ‘manifolds’– three-dimensional analogues of surfaces

– and for a time he assumed that the characterisation of a sphere

in terms of shrinking loops is also true in three dimensions,

where there is a natural analogue of the sphere called the

3-sphere. A 3-sphere is not just a solid ball, but it can be visualised

– if that’s the word – by taking a solid ball and pretending that its

entire surface is actually just a single point.

Imagine doing the same with a circular disc. The rim closes up

like the top of a bag as you draw a string tight round its edge, and

the result is topologically a sphere. Now go up a dimension . . .

Turning a disc
into a sphere.

At first, Poincaré thought that this characterisation of the

3-sphere should be obvious, or at least easily proved, but later he

realised that one plausible version of this statement is actually

wrong, while another closely related formulation seemed

difficult to prove but might well be true. He posed a deceptively

simple question: if a three-dimensional manifold (without

boundary, of finite extent, and so on) had the property that any

loop in it can be shrunk to a point, must that manifold be

topologically equivalent to the 3-sphere?

Subsequent attempts to answer this question failed dismally,
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although after a huge effort by the world’s topologists, the

answer has proved to be ‘yes’ for all versions in every dimension

higher than 3. The belief that the same answer applies in three

dimensions became known as the Poincaré Conjecture, famous as

one of the eight Millennium Prize Problems (page 127).

In 2002 a Russian-born mathematician, Grigori Perelman,

caused a sensation by placing several papers on arXiv.org, an

informal website for current research in physics and mathe-

matics. His papers were ostensibly about various properties of the

‘Ricci flow’, but it became clear that if the work was correct, it

implied that the Poincaré Conjecture is also correct. The idea of

using the Ricci flow dates to 1982, when Richard Hamilton

introduced a new technique based on mathematical ideas used

by Albert Einstein in general relativity. According to Einstein,

spacetime can be considered as curved, and the curvature

describes the force of gravity. Curvature is measured by some-

thing called the ‘curvature tensor’, and this has a simpler relative

known as the ‘Ricci tensor’ after its inventor, Gregorio Ricci-

Curbastro.

According to general relativity, gravitational fields can

change the geometry of the universe as time passes, and these

changes are governed by the Einstein equations, which say that

the stress tensor is proportional to the curvature. In effect, the

gravitational bending of the universe tries to smooth itself out as

time passes, and the Einstein equations quantify that idea.

The same game can be played using the Ricci version of

curvature, and it leads to the same kind of behaviour: a surface

that obeys the equations for the Ricci flow will naturally tend to

simplify its own geometry by redistributing its curvature more

evenly. Hamilton showed that the familiar two-dimensional

version of the Poincaré Conjecture, characterising the sphere,

can be proved using the Ricci flow. Basically, a surface in which

all loops shrink simplifies itself so much as it follows the Ricci

flow that it ends up being a perfect sphere. Hamilton suggested

generalising this approach to three dimensions, but he hit some

difficult obstacles.
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The main complication in three dimensions is that ‘singula-

rities’ can develop, where the manifold pinches together and the

flow breaks down. Perelman’s new idea was to cut the surface

apart near such a singularity, cap off the resulting holes, and

then allow the flow to continue. If the manifold manages to

simplify itself completely after only finitely many singularities

have arisen, then not only is the Poincaré Conjecture true, but a

more far-reaching result, the Thurston Geometrisation

Conjecture, is also true. And that tells us about all possible three-

dimensional manifolds.

Now the story takes a curious turn. It is generally accepted

that Perelman’s work is correct, although his arXiv papers leave a

lot of gaps that have to be filled in correctly, and that has turned

out to be quite difficult. Perelman had his own reasons for not

wanting the prize – indeed, any reward save the solution itself –

and decided not to expand his papers into something suitable for

publication, although he was generally willing to explain how to

fill in various details if anyone asked him. Experts in the area

were forced to develop their own versions of his ideas.

Perelman was also awarded a Fields Medal at the Madrid

International Congress of Mathematicians in 2006, the top prize

in mathematics. He turned that down, too............................................
Hippopotamian Logic

I won’t eat my hat.

If hippos don’t eat acorns, then oak trees will grow in

Africa.

If oak trees don’t grow in Africa, then squirrels hibernate

in winter.

If hippos eat acorns and squirrels hibernate in winter,

then I’ll eat my hat.

Therefore – what?

Answer on page 280...........................................
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Langton’s Ant

Langton’s ant was invented by Christopher Langton, and it

shows how amazingly complex simple ideas can be. It leads to

one of the most baffling unsolved problems in the whole of

mathematics, and all from astonishingly simple ingredients.

The ant lives on an infinite square grid of black and white

cells, and it can face in one of the four compass directions: north,

south, east or west. At each tick of a clock it moves one cell

forward, and then follows three simple rules:

. If it lands on a black cell it makes a 908 turn to the left.

. If it lands on a white cell it makes a 908 turn to the right.

. The cell that it has just vacated then changes colour, from

white to black, or vice versa.

Effect of the
ant moving.
Grey cells can
be any colour
and do not
change on this
move.

As a warm-up, the ant starts by facing east on a completely

white grid. Its first move takes it to a white square, while the

square it started from turns black. Because it is on a white square,

the ant’s next move is a right turn, so now it faces south. That
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takes it to a new white square, and the square it has just vacated

turns black. After a few more moves the ant starts to revisit earlier

squares that have turned black, so it then turns to the left

instead. As time passes, the ant’s motion gets quite complicated,

and so does the ever-changing pattern of black and white squares

that trails behind it.

Jim Propp discovered that the first few hundred moves

occasionally produce a nice, symmetrical pattern. Then things

get rather chaotic for about ten thousand moves. After that, the

ant gets trapped in a cycle in which the same sequence of 104

moves is repeated indefinitely, each cycle moving it two squares

diagonally. It continues like this for ever, systematically building

a broad diagonal ‘highway’.

Langton’s ant builds a
highway.

This ‘order out of chaos’ behaviour is already puzzling, but

computer experiments suggest something more surprising. If you

scatter any finite number of black squares on the grid, before the

ant sets off, it still ends up building a highway. It may take longer

to do so, and its initial movements may be very different, but

ultimately that’s what will happen. As an example, the second

diagram shows a pattern that forms when the ant starts inside a

solid rectangle. Before building its highway, the ant builds a

‘castle’ with straight walls and complicated crenellations. It

keeps destroying and rebuilding these structures in a curiously

purposeful way, until it gets distracted and wanders off –

building a highway.
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Pattern created by
Langton’s ant when it
starts inside a black
rectangle. The highway
is at the lower right.
Small white dots mark
squares of the original
rectangle that have
never been visited.

The problem that is baffling mathematicians is to prove that

the ant always ends up building a highway, for every initial

configuration of finitely many black squares. Or disprove that, if

it’s wrong. We do know that the ant can never get trapped inside

any bounded region of the grid – it always escapes if you wait

long enough. But we don’t know that it escapes along a highway............................................
Pig on a Rope

Farmer Hogswill owns a field, which is a perfect equilateral

triangle, each side 100 metres long. His prize pig Pigasus is tied to

one corner, so that the portion of the field that Pigasus can reach

is exactly half the total area. How long is the rope?

You may – indeed, must – assume that the pig has zero size

(which admittedly is pretty silly) and that the rope is infinitely

thin and any necessary knots can be ignored.

Pigs may safely graze . . . over
half the area of the field.

Answer on page 280...........................................
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The Surprise Examination

This paradox is so famous that I nearly left it out. It raises some

intriguing issues.

Teacher tells the class that there will be a test one day next

week (Monday to Friday), and that it will be a surprise. This

seems reasonable: the teacher can choose any day out of five, and

there is no way that the students can know which day it will be.

But the students don’t see things that way at all. They reason that

the test can’t be on Friday – because if it was, then as soon as

Thursday passed without a test, they’d know it had to be Friday,

so no surprise. And once they’ve ruled out Friday, they apply the

same reasoning to the remaining four days of the week, so the

test can’t be on Thursday, either. In which case it can’t be on

Wednesday, so it can’t be on Tuesday, so it can’t be on Monday.

Apparently, no surprise test is possible.

That’s all very well, but if the teacher decides to set the test

on Wednesday, there seems to be no way that the students could

actually know the day ahead of time! Is this a genuine paradox or

not?

Answer on page 281...........................................
Antigravity Cone

In defiance of the Law of Gravity, this double cone rolls uphill.

Here’s how to make it.

Five pieces
to cut out.
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Copy the five shapes on to a thin sheet of card, two or three

times the size shown here, and cut them out. On piece A, glue

flap v to edge v to make a cone. On piece B, glue flap w to edge w

to make a second cone. Then glue the two cones base to base

using the triangular flaps on A.

Glue flap x of C to edge x of D, and flap y of C to edge y of E.

Finally, glue flap z of D to edge z of E to make a triangular ‘fence’.

Place the double cone at the lower end of this triangle, and

let go. It will appear to roll uphill.

How can this happen?

A rolling cone gathers
no gravity.

Answer on page 282...........................................
Mathematical Jokes 2

An engineer, a physicist, and a mathematician are staying in a

hotel. The engineer wakes up and smells smoke. He goes into the

hallway, sees a fire, fills the wastepaper basket from his room

with water, and pours it on the fire, putting it out.

Later, the physicist wakes up and smells smoke. He goes into

the hallway and sees a (second) fire. He pulls a fire hose off the

wall. Having calculated the temperature of the exothermic

reaction, the velocity of the flame front, the water pressure in the
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hose, and so on, he uses the hose to put out the fire with the

minimum expenditure of energy.

Later, the mathematician wakes up and smells smoke. He

goes into the hallway and sees a (third) fire. He notices the fire

hose on the wall, and thinks for a moment . . . Then he says, ‘OK,

a solution exists!’ – and goes back to bed............................................
Why Gauss Became a Mathematician

Carl Friedrich Gauss.

Carl Friedrich Gauss was born in Brunswick in 1777 and died

in Göttingen in 1855. His parents were uneducated manual

workers, but he became one of the greatest mathematicians ever;

many consider him the best. He was precocious – he is said to

have pointed out a mistake in his father’s financial calculations

when he was three. At the age of nineteen he had to decide

whether to study mathematics or languages, and the decision

was made for him when he discovered how to construct a regular

17-sided polygon using the traditional Euclidean tools of an

unmarked ruler and a compass.

This may not sound like much, but it was totally unprece-

dented, and the discovery led to a new branch of number theory.

Euclid’s Elements contains constructions for regular polygons (all
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sides equal length, all angles equal) with 3, 4, 5, 6 and 15 sides,

and the ancient Greeks knew that the number of sides could be

doubled as often as you wish. Up to 100, the number of sides in a

constructible (regular) polygon – as far as the Greeks knew – must

be

2; 3; 4; 5; 6; 8; 10; 12; 15; 16; 20; 24; 30; 32; 40;

48; 60; 64; 80; 96

For more than two thousand years, everyone assumed that no

other polygons were constructible. In particular, Euclid does not

tell us how to construct 7-gons or 9-gons, and the reason is that

he had no idea how this might be done. Gauss’s discovery was a

bombshell, adding 17, 34 and 68 to the list. Even more

amazingly, his methods prove that other numbers, such as 7, 9,

11 and 13, are impossible. (The polygons do exist, but you can’t

construct them by Euclidean methods.)

Gauss’s construction depends on two simple facts about the

number 17: it is prime, and it is one greater than a power of 2.

The whole problem pretty much reduces to finding which prime

numbers correspond to constructible polygons, and powers of 2

come into the story because every Euclidean construction boils

down to taking a series of square roots – which in particular

implies that the lengths of any lines that feature in the

construction must satisfy algebraic equations whose degree is a

power of two. The key equation for the 17-gon is

x16 þ x15 þ x14 þ x13 þ x12 þ x11 þ x10 þ x9 þ x8 þ x7 þ x6

þ x5 þ x4 þ x3 þ x2 þ xþ 1 ¼ 0

where x is a complex number. The 16 solutions, together with the

number 1, form the vertices of a regular 17-gon in the complex

plane. Since 16 is a power of 2, Gauss realised that he was in with

a chance. He did some clever calculations, and proved that the
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17-gon can be constructed provided you can construct a line

whose length is

1

16

"
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ffiffiffiffiffi
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Since you can always construct square roots, this effectively

solves the problem, and Gauss didn’t bother to describe the

precise steps needed – the formula itself does that. Later, other

mathematicians wrote down explicit constructions. Ulrich von

Huguenin published the first in 1803, and H.W. Richmond

found a simpler one in 1893.

Richmond’s method for constructing a regular 17-gon. Take two
perpendicular radii, AOP0 and BOC, of a circle. Make OJ

4OB ¼ 1

and angle OJE
4OJP0

¼ 1. Find F Such that angle EJF is 458. Draw a
circle with FP0 as diameter, meeting OB at K. Draw the circle
with centre E through K, cutting AP0 in G and H. Draw HP3 and
GP5 perpendicular to AP0. Then P0, P3 and P5 are respectively
the 0th, 3rd and 5th vertices of a regular 17-gon, and the other
vertices are now easily constructed.

Gauss’s method proves that a regular n-gon can be con-

structed whenever n is a prime of the form 2k þ 1. Primes like this

are called Fermat primes, because Fermat investigated them. In
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particular he noticed that k must itself be a power of 2 if 2k þ 1 is

going to be prime. The values k = 1, 2, 4, 8 and 16 yield the

Fermat primes 3, 5, 17, 257 and 65,537. However, 232 þ 1 ¼
4;294;967;297 ¼ 64166;700;417 is not prime. Gauss was aware that

the regular n-gon is constructible if and only if n is a power of 2,

or a power of 2 multiplied by distinct Fermat primes. But he

didn’t give a complete proof – probably because to him it was

obvious.

His results prove that it is impossible to construct regular 7-,

11- or 13-gons by Euclidean methods, because these are prime

but not of Fermat type. The analogous equation for the 7-gon, for

instance, is x6 þ x5 þ x4 þ x3 þ x2 þ xþ 1 ¼ 0, and that has degree

6, which is not a power of 2. The 9-gon is not constructible

because 9 is not a product of distinct Fermat primes – it is 363,

and 3 is a Fermat prime, but the same prime occurs twice here.

The Fermat primes just listed are the only known ones. If there

is another, it must be absolutely gigantic: in the current state of

knowledge the first candidate is 233;554;432 þ 1, where

33;554;432 ¼ 225. Although we’re still not sure exactly which

regular polygons are constructible, the only obstacle is the

possible existence of very large Fermat primes. A useful website

for Fermat primes ismathworld.wolfram.com/FermatNumber.html

In 1832 Friedrich Julius Richelot published a construction for

the regular 257-gon. Johann Gustav Hermes of Lingen University

devoted ten years to the 65,537-gon, and his unpublished work

can be found at the University of Göttingen, but it probably

contains errors.

With more general construction techniques, other numbers

are possible. If you use a gadget for trisecting angles, then the

9-gon is easy. The 7-gon turns out to be possible too, but that’s

nowhere near as obvious............................................
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What Shape is a Crescent Moon?

The Moon is low in the sky shortly after sunset or before dawn;

the bright part of its surface forms a beautiful crescent. The two

curves that form the boundary of the crescent resemble arcs of

circles, and are often drawn that way. Assuming the Moon to be a

perfect sphere, and the Sun’s rays to be parallel, are they arcs of

circles?

A crescent formed
by two arcs of
circles. Is the crescent
Moon like this?

Answer on page 283...........................................
Famous Mathematicians

All the people listed below – except one – either started a degree

(or joint degree) in mathematics, or studied under famous

mathematicians, or were professional mathematicians in their

other life. What are they famous for? Which person does not

belong on the list?

Pierre Boulez Michael Jordan

Sergey Brin Theodore Kaczynski

Lewis Carroll John Maynard Keynes

J.M. Coetzee Carole King

Alberto Fujimori Emanuel Lasker

Art Garfunkel J.P. Morgan

Philip Glass Larry Niven

Teri Hatcher Alexander Solzhenitsyn

Edmund Husserl Bram Stoker
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Leon Trotsky Virginia Wade

Eamon de Valera Ludwig Wittgenstein

Carol Vorderman Sir Christopher Wren

Answers on page 284...........................................
What is a Mersenne Prime?

A Mersenne number is a number of the form 2n � 1. That is, it is

one less than a power of 2. A Mersenne prime is a Mersenne

number that happens also to be prime. It is straightforward to

prove that in this case the exponent n must itself be prime. For

the first few primes, n ¼ 2, 3, 5 and 7, the corresponding

Mersenne numbers 3, 7, 31 and 127 are all prime.

Interest in Mersenne numbers goes back a long way, and

initially it was thought that they are prime whenever n is prime.

However, in 1536 Hudalricus Regius proved that this assumption

is false, pointing out that 211 � 1 ¼ 2;047 ¼ 23689. In 1603 Pietro

Cataldi noted that 217 � 1 and 219 � 1 are prime, which is correct,

and claimed that n ¼ 23, 29, 31 and 37 also lead to primes.

Fermat proved that he was wrong for 23 and 37, and Euler

demolished his claim for 29. But Euler later proved that 231 � 1 is

prime.

In his 1644 book Cogitata Physico-Mathematica, the French

monk Marin Mersenne stated that 2n � 1 is prime when n is 2, 3,

5, 7, 13, 17, 19, 31, 67, 127 and 257 – and for no other values in

that range. Using the methods then available, he could not have

tested most of these numbers, so his claims were mainly

guesswork, but his name became associated with the problem.

In 1876 Édouard Lucas developed a cunning way to test

Mersenne numbers to see if they are prime, and showed that

Mersenne was right for n ¼ 127. By 1947 all cases in Mersenne’s

range had been checked, and it turned out that he had

mistakenly included 67 and 257. He had also omitted 61, 89 and
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107. Lucas improved his test, and in the 1930s Derrick Lehmer

found further improvements. The Lucas–Lehmer test uses the

sequence of numbers

4; 14; 194; 37634; . . .

in which each number is the square of the previous one,

decreased by 2. It can be proved that the nth Mersenne number is

prime if and only if it divides the (n� 1)th term of this sequence.

This test can prove that a Mersenne number is composite

without finding any of its prime factors, and it can prove the

number is prime without testing for any prime factors. There’s a

trick to keep all numbers involved in the test smaller than the

Mersenne number concerned.

Looking for new, larger Mersenne primes is an amusing way

to try out new, fast computers, and over the years prime-hunters

have extended the list. It now includes 44 primes:

n Year Discoverer
....................................................................................................................................................................

2 — known from antiquity

3 — known from antiquity

5 — known from antiquity

7 — known from antiquity

13 1456 anonymous

17 1588 Pietro Cataldi

19 1588 Pietro Cataldi

31 1772 Leonhard Euler

61 1883 Ivan Pervushin

89 1911 R.E. Powers*

107 1914 R.E. Powers

127 1876 Édouard Lucas

521 1952 Raphael Robinson

607 1952 Raphael Robinson

1,279 1952 Raphael Robinson

2,203 1952 Raphael Robinson

2,281 1952 Raphael Robinson

3,217 1957 Hans Riesel

* Powers is a rather obscure, possibly amateur, mathematician. I
haven’t been able to locate his first name.
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4,253 1961 Alexander Hurwitz

4,423 1961 Alexander Hurwitz

9,689 1963 Donald Gillies

9,941 1963 Donald Gillies

11,213 1963 Donald Gillies

19,937 1971 Bryant Tuckerman

21,701 1978 Landon Noll and Laura Nickel

23,209 1979 Landon Noll

44,497 1979 Harry Nelson and David Slowinski

86,243 1982 David Slowinski

110,503 1988 Walter Colquitt and Luther Welsh

132,049 1983 David Slowinski

216,091 1985 David Slowinski

756,839 1992 David Slowinski et al.

859,433 1994 David Slowinski and Paul Gage

1,257,787 1996 David Slowinski and Paul Gage

1,398,269 1996 Joel Armengaud et al.

2,976,221 1997 Gordon Spence et al.

3,021,377 1998 Roland Clarkson et al.

6,972,593 1999 Nayan Hajratwala et al.

13,466,917 2001 Michael Cameron et al.

20,996,011 2003 Michael Shafer et al.

24,036,583 2004 Josh Findley et al.

25,964,951 2005 Martin Nowak et al.

30,402,457 2005 Curtis Cooper et al.

32,582,657 2006 Curtis Cooper et al.
....................................................................................................................................................................

Up to and including the 39th Mersenne prime (n ¼ 13,466,917)

the list is complete, but there may be undiscovered Mersenne

primes in the gaps between the known ones after that. The 44th

known Mersenne prime, 232;582;657 � 1, has 9,808,358 decimal

digits and is currently (December 2007) the largest known prime.

Mersenne primes generally hold this record, thanks to the Lucas–

Lehmer test; however, we know fromEuclid that there is no largest

prime. For up-to-date information, go to the Mersenne Primes

website primes.utm.edu/mersenne/; you can also join the Great

Internet Mersenne Prime Search (GIMPS) at www.mersenne.org/...........................................
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The Goldbach Conjecture

In 2000, as a publicity stunt for Apostolos Doxiadis’s novel Uncle

Petros and Goldbach’s Conjecture, the publisher Faber & Faber

offered a million-dollar prize for a proof of the conjecture,

provided it was submitted before April 2002. The prize was never

claimed, which mathematicians did not find surprising, because

the problem has resisted all efforts for more than 250 years.

It began in 1742, when Christian Goldbach wrote to

Leonhard Euler, suggesting that every even integer is the sum of

two primes. (Apparently René Descartes had come across the

same idea a little earlier, but no one had noticed.) At that time

the number 1 was considered to be prime, so 2 ¼ 1þ 1 was

acceptable, but nowadays we reformulate the the Goldbach

Conjecture thus: every even integer greater than 2 is the sum of

two primes – often in several different ways. For example,

4 ¼ 2þ 2

6 ¼ 3þ 3

8 ¼ 5þ 3

10 ¼ 7þ 3 ¼ 5þ 5

12 ¼ 7þ 5

14 ¼ 11þ 3 ¼ 7þ 7

Euler replied that he was sure Goldbach must be right, but he

couldn’t find a proof – and that remains true today. We do know

that every even integer is the sum of at most six primes – proved

by Olivier Ramaré in 1995. In 1973 Chen Jing-Run proved that

every sufficiently large even integer is the sum of a prime and a

semiprime (either a prime or a product of two primes).

In 1998 Jean-Marc Deshouillers, Yannick Saouter and

Herman te Riele verified Goldbach’s Conjecture for all even

numbers up to 1014. By 2007, Oliveira e Silva had improved that

to 1018, and his computations continue. If the Riemann

Hypothesis (page 215) is true, then the Odd Goldbach

Conjecture – that every odd integer greater than 5 is the sum of

three primes – is a consequence of the 1998 result.
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Graph showing in how many ways (vertical axis) a given even
number (horizontal axis) can be expressed as a sum of two
primes. The lowest points in the graph move upwards as we go
from left to right, indicating that there are many ways to achieve
this. However, for all we know an occasional point might fall on
the horizontal axis. Just one such point would disprove the
Goldbach Conjecture.

In 1923 Godfrey Hardy and John Littlewood obtained a

heuristic formula – one that they could not prove rigorously, but

looked plausible – for the number of different ways to write a

given even integer as a sum of two primes. This formula, which

agrees with numerical evidence, indicates that when the number

gets large, there are many ways to write it as a sum of two primes.

Therefore we may expect the smallest of the two primes to be

relatively tiny. In 2001 Jörg Richstein observed that for numbers

up to 1014, the smaller prime is at most 5,569, and this occurs for

389;965;026;819;938 ¼ 5;569þ 389;965;814;369

...........................................
Turtles All the Way Down

Infinity is a slippery idea. People talk fairly casually of ‘eternity’ –

an infinite period of time. According to the Big Bang theory, the

universe came into being about 13 billion years ago. Not only
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was there no universe before then – there was no ‘before’ before

then.* Some people worry about that, and most of them seem

much happier with the idea that the universe ‘has always

existed’. That is, its past has already been infinitely long.

This alternative seems to solve the difficult question of the

origin of the universe, by denying that it ever had an origin. If

something has always been here, it’s silly to ask why it’s here

now. Isn’t it?

Probably. But that still doesn’t explain why it’s always been

here.

This can be a difficult point to grasp. To bring it into

perspective, let me compare it with a rather different proposal.

There is an amusing (and very likely true) tale that a famous

scientist – Stephen Hawking is often mentioned because he told

the story in A Brief History of Time – was giving a lecture about the

universe, and a lady in the audience pointed out that the Earth

floats in space because it rests on the back of four elephants,

which in turn rest on the back of a turtle.

‘Ah, but what supports the turtle?’ the scientist asked.

‘Don’t be silly,’ she said. ‘It’s turtles all the way down!’

Turtles all the
way down.

* Some cosmologists now think that there could have been
something before the Big Bang after all – our universe may be
part of a ‘multiverse’ in which individual universes could come
into existence or fade away again. The theory is nice, but it’s
difficult to find any way to test it.
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All very amusing, and we don’t buy that explanation. A self-

supporting pile of turtles is ludicrous, and not just because it’s

turtles. Each turtle being supported by a previous one just

doesn’t look like an explanation of how the whole pile stays up.

Very well. But now replace the Earth by the present state of

the universe, and replace each turtle by the previous state of the

universe. Oh, and change ‘support’ to ‘cause’. Why does the

universe exist? Because a previous one did. Why did that one

exist? Because a previous one did. Did it all start a finite time in

the past? No, it’s universes all the way back.*

So a universe that has always existed is at least as puzzling as

one that has not............................................
Hilbert’s Hotel

Among the paradoxes concerning the infinite are a series of

bizarre events at Hilbert’s Hotel. David Hilbert was one of the

world’s leading mathematicians around 1900. He worked in the

logical foundations of mathematics and took a particular interest

in infinity. Anyway, Hilbert’s Hotel has infinitely many rooms,

numbered 1, 2, 3, 4, and so on – every positive integer.

One bank holiday weekend, the hotel was completely full. A

traveller without a reservation arrived at reception wanting a

room. In any finite hotel, no matter how big, the traveller would

be out of luck – but not in Hilbert’s Hotel.

‘No problem, sir,’ said the manager. ‘I’ll ask the person in

Room 1 to move to Room 2, the person in Room 2 to move to

Room 3, the person in Room 3 to move to Room 4, and so on.

The person in Room n will move to Room nþ 1. Then Room 1

will be free, so I’ll put you there.’

* Part of the appeal of the multiverse approach is that it revives the
‘it’s always been here’ point of view. Our universe hasn’t, but the
surrounding multiverse has. It’s multiverses all the way back . . .
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All move up one, and Room 1 is free.

This trick works in an infinite hotel. In a finite hotel it goes

wrong, because the person in the room with the biggest number

has nowhere to go. But in Hilbert’s Hotel there is no biggest room

number. Problem sorted.

Ten minutes later, an Infinity Tours coach arrived, with

infinitely many passengers sitting in seats 1, 2, 3, 4, and so on.

‘Well, I can’t fit you in by asking every other guest to move

up some number of places,’ said the manager. ‘Even if they all

moved up a million places, that would only free up a million

rooms.’ He thought for a moment. ‘Nevertheless, I can still fit

you in. I’ll ask the person in Room 1 to move to Room 2, the

person in Room 2 to move to Room 4, the person in Room 3 to

move to Room 6, and so on. The person in Room n will move to

Room 2n. That frees up all the odd-numbered rooms, so now I

can put the person in Seat 1 of your bus into Room 1, the person

in Seat 2 into Room 3, the person in Seat 3 into Room 5, and so

on. The person in Seat n will move to Room 2n� 1.’

How to accommodate an infinite bus-load.

However, the manager’s troubles were still not over. Ten

minutes later, he was horrified to see infinitely many Transfinity

Travel buses arriving in his (infinite) car park.
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He rushed out to meet them. ‘We’re full – but I can still fit you

all in!’

‘How?’ asked the driver of Bus 1.

‘I’ll reduce you to a problem I’ve already solved,’ said the

manager. ‘I want you to move everyone into Bus 1.’

‘But Bus 1 is full! And there are infinitely many other buses!’

‘No problem. Line up all your buses side by side, and

renumber all the seats using a diagonal order.’

The Manager’s ‘diagonal’ order – the numbers 2–3, 4–5–6,
7–8–9–10, and so on slant to the left.

‘What does that achieve?’ asked the driver.

‘Nothing – yet. But notice: each passenger, in each of your

infinitely many buses, is assigned a new number. Every number

occurs exactly once.’

‘And your point is—?’

‘Move each passenger to the seat in Bus 1 that corresponds to

their new number.’

The driver did so. Then everyone was sitting in Bus 1, and all

the other buses were empty – so they drove away.

‘Now I’ve got a full hotel and just one extra bus-load,’ said

the manager. ‘And I already know how to deal with that.’...........................................
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Continuum Coaches

You won’t be surprised to hear that the Hilbert’s Hotel eventually

ran into an accommodation problem that the manager could not

solve. This time the hotel was completely empty – not that this

ever seemed to make much difference. Then one of Cantor’s

Continuum Coaches stopped at the front door.

Georg Cantor was the first to sort out the mathematics of

infinite sets. And he discovered something remarkable about the

‘continuum’ – the real number system. A real number is one that

can be written as a decimal, which can either stop after finitely

many digits, like 1.44, or go on for ever, like p. Here’s what

Cantor found.

The seats of the Continuum Coach were numbered using real

numbers, not positive integers.

‘Well,’ the manager thought, ‘one infinity is just like any

other, right?’ So he assigned passengers to rooms, and eventually

the Hotel was full and the lobby was empty. The manager sighed

with relief. ‘Everyone has a room,’ he said to himself.

Then a forlorn figure came in through the revolving doors.

‘Good evening,’ said the manager.

‘My name is Mr Diagonal. Geddit? Missed-a-diagonal. You’ve

missed me out, mate.’

‘Well, I can always bump everyone up one room—’

‘No, mate, you said ‘‘Everyone has a room’’ – I heard you. But

I don’t.’

‘Nonsense! You’ve gone to your room, then nipped out the

back and come in the front. I know your kind!’

‘No, mate – I can prove I’m not in any of your rooms. Who’s

in Room 1?’

‘I can’t reveal personal information about guests.’

‘What’s the first decimal place of their coach seat?’

‘I suppose I can reveal that. It’s a 2.’

‘My first digit is 3. So I’m not the person in Room 1, mate.

Agreed?’

‘Agreed.’
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‘What’s the second decimal place of the coach seat of the

person in Room 2?’

‘It’s a 7.’

‘My second digit is 5. So I’m not the person in Room 2.’

‘That makes sense.’

‘Yeah, mate, and it goes on doing that. What’s the third

decimal place of the coach seat of the person in Room 3?’

‘It’s a 4.’

‘My third digit is 8. So I’m not the person in Room 3.’

‘Hmm. I think I see where this is headed.’

‘Too right, mate. My nth digit is different from the nth digit

of the person in Room n, for every n. So I’m not in Room n. Like I

said, you left me out.’

‘And like I said, I can always bump everyone up one place and

fit you in.’

‘No use, mate. There’s infinitely many more just like me out

there, sitting in your car park waiting for a room. However you

assign passengers to rooms, there’s going to be someone on the

coach whose nth digit is different from the nth digit of the

person in Room n, for every n. Hordes of them, in fact. You’ll

always miss people out.’

Now, you understand that Cantor didn’t quite write his proof

in those terms, but that was the basic idea. He proved that the

infinite set of real numbers can’t be matched, one for one, with

the infinite set of whole numbers. Some infinities are bigger than

others............................................
A Puzzling Dissection

‘Why are you hacking that chessboard to bits?’ asked

Innumeratus.

‘I want to show you something about areas,’ said Mathophila.

‘What’s the area of the chessboard if each square has area one

square unit?’

Innumeratus thought about this, and because he was better
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at maths than his name might suggest, he quickly said, ‘It’s 8

times 8, which is 64 square units.’

How Mathophila cut up
her chessboard . . .

‘Excellent!’ said Mathophila. ‘Now, I’m going to rearrange

the four pieces to make a rectangle.’

. . . and how she rearranged the pieces.

‘OK,’ said Innumeratus.

‘What’s the area of the rectangle?’

‘Er – it must be 64 square units as well! It’s made from the

same pieces.’

‘Right . . . but what size is the rectangle?’

‘Let me see – 13 by 5.’

‘And what is 13 times 5?’

‘65,’ replied Innumeratus. He paused. ‘So its area must be 65

square units. That’s strange. The area can’t change when the

pieces are reassembled in a different way . . . ’

So what’s happened?

Answer on page 286...........................................

162 // A Puzzling Dissection



A Really Puzzling Dissection

‘The area can’t change when the pieces are reassembled in a

different way.’

Hmmm.

In 1924 two Polish mathematicians, Stefan Banach and

Alfred Tarski, proved that it is possible to dissect a sphere into

finitely many pieces, which can then be rearranged to make two

spheres – each the same size as the original. No overlaps, no

missing bits – the pieces fit together perfectly. This result has

become known as the Banach–Tarski paradox, although it’s a

perfectly valid theorem and the only element of paradox is that

it seems to be obviously false.

It can be done – but not with pieces like these.

Hang on, though. Surely, if you cut a sphere into several

pieces, the total volume of the pieces must be the same as that of

the sphere. So however you reassemble the pieces, the total

volume can’t change. But two identical spheres have twice the

volume of a single sphere (of the same size). You don’t have to be

a genius to see that it can’t be done! In fact, if it could be done,

then you could start with a gold sphere, cut it up, fit the pieces

back together, and end up with twice as much gold. Then repeat

. . . But you can’t get something for nothing.

Hang on, though. Let’s not be so hasty.

The argument about gold is inconclusive, because mathe-

matical concepts do not always model the real world exactly. In

mathematics, volumes can be subdivided into indefinitely small

pieces. In the real world, you hit problems at the atomic scale.

This could spoil things if we try to use gold.

In contrast, the argument about volumes looks watertight.

But there’s a tiny loophole in the logic: the tacit assumption that
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the separate pieces have well-defined volumes. ‘Volume’ is such a

familiar concept that we tend to forget just how tricky it can be.

None of this means that Banach and Tarski were right; it just

explains why they are not obviously wrong. Unlike the nice

polygonal pieces in Mathophila’s dissection of a chessboard, the

Banach–Tarski ‘pieces’ are more like disconnected clouds of

infinitely small dust specks than solid lumps. They are so

complicated, in fact, that their volumes cannot be defined – not

if we want them to obey the usual rule ‘when you combine

several pieces, their volumes add’. And if that rule fails, the

argument about volumes comes to bits. The single sphere, and

two copies of it, have well-defined volumes. But the intermediate

stages, when they are cut into pieces, aren’t like that.

What are they like? Well . . . not like that.

Banach and Tarski realised that this loophole might actually

make their paradoxical dissection possible. They proved that:

. You can split a single sphere A into finitely many very

complicated, possibly disconnected, parts.

. You can do the same to two spheres B andC, the same size as A.

. You can accomplish all of that in such a way that the parts of

B and C together correspond exactly to the parts of A.

. You can arrange for corresponding parts to be perfect copies

of one another.

The proof of the Banach–Tarski paradox is complicated and

technical, and it requires a set-theoretic assumption known as

the axiom of choice. This particular assumption worries some

mathematicians. However, the fact that it leads to the Banach–

Tarski paradox is not what worries them, and is no reason to

reject it. Why not? Because the Banach–Tarski paradox isn’t

really very paradoxical. With the right intuition, we would

expect such paradoxical dissections to be possible.

Let me try to give you that intuition. It all hinges on the weird

behaviour of what are called infinite sets. Although a sphere has

finite size, it contains infinitely many points. That leaves room for

theweirdness of infinity to showup in the geometry of the sphere.
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A useful analogy involves the English alphabet, the 26 letters

A, B, C, . . . , Z. These letters can be combined to make words, and

we list permissible words in a dictionary. Suppose we allow all

possible sequences of letters, as long or as short as we like. So

AAAAVDQX is a word, and so is GNU, and so is ZZZ . . . Z with ten

million Z’s. We can’t print such a dictionary, but to mathemat-

icians it is awell-defined setwhichcontains infinitelymanywords.

Now, we can dissect this dictionary into 26 pieces. The first

piece contains all words starting with A, the second contains all

words starting with B, and so on, with the 26th piece containing

all words starting with Z. These pieces do not overlap, and every

word occurs in exactly one piece.

Each piece, however, has exactly the same structure as the

original dictionary. The second piece, for example, contains the

words BAAAAVDQX, BGNU and BZZZ . . . Z. The third contains

CAAAAVDQX, CGNU and CZZZ . . . Z. You can convert each

piece into the entire dictionary by lopping off the first letter from

every word.

In other words: we can cut the dictionary apart, and

reassemble the pieces to make 26 exact copies of the dictionary.

Banach and Tarski found a way to do the same kind of thing

with the infinite set of all points in a solid sphere. Their alphabet

consisted of two different rotations of the sphere; their words

were sequences of these rotations. By playing a more compli-

cated version of the dictionary game with the rotations, you can

create an analogous dissection of the sphere. Since there are now

two ‘letters’ in the alphabet, we convert the original sphere into

two identical copies.

Careful readers will observe that I’ve cheated slightly in the

interests of simplicity. When I chop off the initial letter B from

the second piece, for instance, I not only get the entire original

dictionary: I also get the ‘empty’ word that arises when the initial

B is deleted from the word B. So really my dissection turns the

dictionary into 26 copies of itself, plus 26 extra words A, B, C,

. . . , Z of length 1. To keep everything neat and tidy, we have to

absorb the extra 26 words into the pieces. A similar problem
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occurs in Banach and Tarski’s construction – but this is a very

fine point. If we ignore it, we still double the sphere – we just

have a few extra points left over. Which is just as suprising.

After Banach and Tarski proved their theorem, mathemat-

icians began to wonder how few pieces you could get away with.

In 1947 Abraham Robinson proved that it can be done with five

pieces, but no fewer. If you are willing to ignore a single point at

the centre of the sphere, this number reduces to four.

The Banach–Tarski paradox isn’t really about dissecting

spheres. It is about the impossibility of defining a sensible

concept of ‘volume’ for really complicated shapes............................................
Nothing Up My Sleeve . . .

How can you remove a loop of string from your arm without

taking your hand out of your jacket pocket?

More precisely: take a two-metre length of string and tie its

ends together to form a closed loop. Put on your jacket, button it

up, and put your arm through a loop and into the side pocket.

Now you have to remove the loop without taking your hand out

of your pocket – and without sliding the loop into the pocket to

sneak it out over the ends of your fingers.

Remove the string without removing
your hand from your pocket.

Answer on page 286...........................................
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Nothing Down My Leg . . .

Once your audience has learned to solve the previous problem,

ask someone to try the same thing, still wearing the jacket, but

with his hand in his trouser pocket.

Answer on page 287...........................................
Two Perpendiculars

Euclidean geometry is renowned for its logical consistency: no

two theorems contradict each other. Actually, there are errors in

Euclid. Here’s a case in point.

One of Euclid’s theorems proves that if we have a line, and a

point not on the line, then there is exactly one ‘perpendicular’

from the point to the line. That is, there is a line through the

point that meets the original line at right angles – and there is

only one such line. (If there were two, they would be parallel, so

they couldn’t both pass through the same point.)

Given AB and X, we can find P such that PX is perpendicular to
AB. There can’t be another point Q like that, because the line
through Q is parallel to PX so it can’t pass through X.

A second Euclidean theorem proves that if you take a circle

and join the two ends of a diameter to a point on the

circumference, you get a right angle.
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If AB is a diameter of the
circle, angle APB is a right
angle.

Let’s put these two theorems together and see what happens.

How to find two
perpendiculars.

Given the line AB and the point X, draw circles with

diameters AX and BX. Let the line ABmeet the first circle at P and

the second circle at Q. Then the angle APX is a right angle, since

AX is a diameter of the first circle. Similarly, the angle BQX is a

right angle. So there are two perpendiculars XP and XQ from X to

AB.

Which of Euclid’s two theorems is wrong?

Answer on page 288...........................................
Can You Hear the Shape of a Drum?

The backcloth depicted a striking scene: the Rhine valley by

moonlight. In the pit, the orchestra was rehearsing Wagner’s

Götterdämmerung. The story had reached the tragic death of

Siegfried, and the conductor, Otto Fenderbender, raised his

baton for the beginning of the ‘Funeral March’. First, just

tympani, an intricate repeated rhythm in a low C sharp . . .
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‘No, no, no!’ screamed Fenderbender, hurling his baton to

the floor. ‘Not like that, you incompetent pigs!’

The leading tympanist, somewhat unwisely, protested. ‘But

Herr Fenderbender, the rhythm was absolutely pre—’

‘Rhythm, schmythm!’ said Fenderbender.

‘The tempo was exactly as the score indic—’

‘I am not complaining about the tempo!’ screamed the

conductor.

‘The pitch was a perfect C shar—’

‘Pitch? Pitch? Of course the pitch was perfect! I heard that for

myself when the orchestra was tuning up! I have an inherent

sense of pitch!’

‘Then what—’

‘The shape, you fool! The shape!’

The lead tympanist looked perplexed. It was hard to describe.

Otto tried to express what he had heard. ‘One of the drums

sounded too . . . well, too square,’ he said. ‘The other tympani

had their usual . . . rounded sound, but one of them— well, it had

corners.’

‘Come now, Herr Fenderbender – surely you’re not claiming

you can hear the shape of a drum?’

‘I heard what I heard,’ Otto said doggedly. ‘One of the drums

is too square.’

And, what do you know? He was right. It’s the Bessel

functions, you see.

Some
vibrational
modes of a
circular
drum.

Let me explain. When a drum beats, it produces several
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different notes at once, each note corresponding to a different

mode of vibration. Each has its own frequency, or equivalently,

pitch. Euler calculated the vibrational spectrum of a circular

drum – the list of frequencies of these basic modes – using

mathematical gadgets called Bessel functions. For a square drum

you get sines and cosines instead. In both cases there are

characteristic patterns of nodal lines, where the drum remains

stationary. At any given instant, the drum is displaced upwards

on one side of a nodal line, and downwards on the other. As the

drum vibrates, each region between the nodal lines oscillates up

and down. Fast oscillations create a high-pitched sound, slow

oscillations make the pitch lower.

Some of the
modes of a
square drum.

The mathematics of vibrations proves that the shape of a

drum determines its list of frequencies – basically, what it can

sound like. But can we go the other way, and deduce the shape

from the sound? In 1966 Mark Kac made that question precise:

given the spectrum, is it possible to find the shape of the drum?

Kac’s question is much more important than its quirky

formulation might suggest. When an earthquake hits, the entire

Earth rings like a bell, and seismologists deduce a great deal

about the internal structure of our planet from the ‘sound’ that it

produces and the way those sounds echo around as they bounce

off different layers of rock. Kac’s question is the simplest one we

can ask about such techniques. ‘Personally, I believe that one

cannot ‘‘hear’’ the shape,’ Kac wrote. ‘But I may well be wrong

and I am not prepared to bet large sums either way.’

170 // Can You Hear the Shape of a Drum?



The first significant evidence that Kac was right showed up in

a higher-dimensional analogue of the problem. John Milnor

wrote a one-page paper proving that two distinct 16-dimensional

tori (generalised doughnuts, basically) have the same spectrum.

The first results for ordinary 2-dimensional drums were in a more

positive direction: various features of the shape can be deduced

from the spectrum. Kac himself proved that the spectrum of a

drum determines its area and perimeter. A curious consequence

is that you can hear whether or not a drum is circular, because a

circle has the smallest perimeter for a given area. If you know the

area A and the perimeter p, and it so happens that p2 ¼ 4pA – as it

is for a circle – then the drum is a circle, and vice versa. So when

Fenderbender said that tympani should have a nice ‘rounded’

sound, he knew what he was talking about.

In 1989 Carolyn Gordon, David Webb and Scott Wolpert

answered Kac’s question by constructing two distinct math-

ematical drums that produce an identical range of sounds. Since

then, simpler examples have been found. So now we know that

there are limits to what information can be deduced from a

shape’s vibrational spectrum.

The first example of two sound-alike drums with different
shapes.

...........................................

Can You Hear the Shape of a Drum? // 171



What is e, and Why?

The number e, which is approximately 2.7182, is the ‘base of

natural logarithms’, a term that refers to its historical origins.

One way to see how it arises is to see how a sum of money grows

when compound interest is applied at increasingly fine intervals.

Suppose that you deposit £1 in the Bank of Logarithmania—

No, no, no. This is the twenty-first century. People don’t

deposit savings in banks, they borrow.

OK, suppose you borrow £1 on your Logarithmania credit

card. (More likely it would be £4,675.23, but £1 is easier to think

about.) Once the 0% balance transfer deal has lapsed – about a

week after you sign up for the card – the bank applies an interest

rate of 100%, paid annually. Then after one year you will owe

them

£1:00 borrowedþ £1:00 interest ¼ £2:00 total

If instead you paid 50% interest every six months, compounded

(so that interest becomes payable on previous interest) then after

one year you would owe

£1:00 investedþ £0:50 interestþ £0:75 interest ¼ £2:25 total

This is ð1þ 1
2Þ2, and the pattern continues like that. So, for

example, if you paid interest of 10% at intervals of one-tenth of a

year, you would end up owing

1þ 1

10

� �10

¼ 2:5937

pounds. The Bank likes the way these sums are going, so it

decides to apply the interest rate ever more frequently. If you

paid interest of 1% at intervals of one-hundredth of a year, you

would end up owing

1þ 1

100

� �100

¼ 2:7048
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pounds. If you paid interest of 0.1% at intervals of one-

thousandth of a year, you would end up owing

1þ 1

1;000

� �1;000

¼ 2:7169

pounds. And so on.

As the intervals become ever finer, the amount you owe does

not increase without limit. It just seems that way. The amount

owed gets closer and closer to 2.7182 pounds – and this number

is given the symbol e. It’s one of those weird numbers which, like

p, turn up naturally in mathematics but can’t be expressed

exactly as a fraction, so it gets a special symbol. It is especially

important in calculus, and it is widely used in scientific

applications............................................
May Husband and Ay . . .

In a single move, a chess queen can travel any number of squares

in a straight line – horizontally, vertically or diagonally. (Unless

another piece stops her, but we ignore that in this puzzle.)

Move the queen from Q to K,
visiting each square exactly
once and in as few moves as
possible.

She starts on square Q and wishes to visit the king on square

K. Along the way, she wants to visit all of her other subjects, who

live on the other 62 squares. Just passing through, you appreciate

– she doesn’t stop on every square, but she does has to stop now

and again. How can she visit all the squares and finish at the
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king’s square, without passing through any square twice – in the

smallest number of moves?

Answer on page 288...........................................
Many Knees, Many Seats

A polyhedron is a solid with finitely many flat (that is, planar)

faces. Faces meet along lines called edges; edges meet at points

called vertices. The climax of Euclid’s Elements is a proof that there

are precisely five regular polyhedrons, meaning that every face is a

regular polygon (equal sides, equal angles), all faces are identical,

and each vertex is surrounded by exactly the same arrangement of

faces. The five regular polyhedrons (also called regular solids) are:

. the tetrahedron, with 4 triangular faces, 4 vertices and 6 edges

. the cube or hexahedron, with 6 square faces, 8 vertices and

12 edges

. the octahedron, with 8 triangular faces, 6 vertices and 12 edges

. the dodecahedron, with 12 pentagonal faces, 20 vertices and

30 edges

. the icosahedron, with 20 triangular faces, 12 vertices and

30 edges.

The five regular solids.
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The names start with the Greek word for the number of faces,

and ‘hedron’ means ‘face’. Originally it meant ‘seat’, which isn’t

quite the same thing. While we’re discussing linguistics, the

‘-gon’ in ‘polygon’ originally meant ‘knee’ and later acquired the

technical meaning of ‘angle’. So a polygon has many knees, and

a polyhedron has many seats.

The regular solids arise in nature – in particular, they all occur

in tiny organisms known as radiolarians. The first three also

occur in crystals; the dodecahedron and icosahedron don’t,

although irregular dodecahedra are sometimes found.

Radiolarians shaped like the regular solids.

It’s quite easy to make models of polyhedrons out of card, by

cutting out a connected set of faces – called the net of the solid –

folding along edges, and gluing or taping appropriate pairs of

edges together. It helps to add flaps to one edge of each such pair,

as shown.
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Nets of the regular solids.

Here’s a bit of arcane lore: if the edges are of unit length, then

the volumes of these solids (in cubic units) are:

. Tetrahedron: 2
p
12 *0:117 851

. Cube: 1

. Octahedron: 2
p
3 *0:471 405

. Dodecahedron: 5
p
2 f4*7:663 12

. Icosahedron: 5
p
6 f2*2:181 69

Here f is the golden number (page 96), which turns up

whenever you have pentagons around – just as p turns up

whenever you have spheres or circles. And * means ‘approxi-

mately equals’.

Analogues of the regular polyhedrons can be defined in

spaces of 4 or more dimensions, and are called polytopes. There

are six regular polytopes in 4 dimensions, but only three regular

polytopes in 5 dimensions or more............................................
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Euler’s Formula

The regular solids have a curious pattern which turns out to be

far more general. If F is the number of faces, E the number of

edges and V the number of vertices, then

F � Eþ V ¼ 2

for all five solids. In fact, the same formula holds for any

polyhedron that has no ‘holes’ in it – one that is topologically

equivalent to a sphere. This relation is called Euler’s formula, and

its generalisations to higher dimensions are important in

topology.

The formula also applies to a map in the plane, provided we

consider the infinite region outside the map to be an extra face –

or ignore this ‘face’ and replace the formula by

F � Eþ V ¼ 1

which amounts to the same thing but is easier to think about. I’ll

call this expression Euler’s formula for maps.

The diagram shows, using a typical example, why this

formula is true. The value of F � Eþ V is written underneath

each step in the process. The method of proof is to simplify the

map, one step at a time. If we choose a face adjacent to the

outside of the map, and remove that face and an adjacent outside

edge, then both F and E decrease by 1. This leaves F � E

unchanged. Since we haven’t altered V, it also leaves F � Eþ V

unchanged. We can keep erasing a face and a corresponding edge

until all faces have been removed. We are left with a network of

edges and vertices, and this always forms a ‘tree’ – there are no

closed loops of edges. In the example in the diagram, this stage is

reached at the sixth step, when F� Eþ V ¼ 0� 7þ 8.
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Proof of Euler’s formula for maps in the plane.

Now we simplify the tree by snipping off one ‘branch’ – an

edge on the end of the tree plus the vertex on the outside end of

that edge – at a time. Now F remains at 0, while E and V both

decrease by 1 with each snip. Again, F � Eþ V remains

unchanged. Eventually, a single vertex remains. Now

F ¼ 0; E ¼ 0 and V ¼ 1. So at the end of the process,

F � Eþ V ¼ 1. Since the process does not change this quantity, it

must also have been equal to 1 when we started.

The proof explains why the signs alternate – plus, minus, plus

– as we go from faces to edges to vertices. A similar trick works for

higher-dimensional topology, for much the same reason.

There is a hidden topological assumption in the proof: the

map is drawn in the plane. Equivalently, when considering

polyhedrons, they must be ‘drawable’ on the surface of a sphere.

If the polyhedron or map lives on a surface that is topologically

distinct from a sphere, such as a torus, then the method of proof

can be adapted but the final result is slightly different. For

example, the formula for polyhedrons becomes

F � Eþ V ¼ 0

when the polyhedron is topologically equivalent to a torus. As an

example, this ‘picture frame’ polyhedron has F ¼ 16; E ¼ 32 and

V ¼ 16:
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Picture frame polyhedron.

On a surface with g holes, the formula becomes

F � Eþ V ¼ 2� 2g

so we can calculate the number of holes by drawing a

polyhedron on the surface. In this manner, an ant that inhabited

the surface and could not perceive it ‘from outside’ would still be

able to work out the topology of the surface. Today’s cosmolo-

gists are trying to work out the topological shape of our own

universe – which we can’t observe ‘from outside’ – by using more

elaborate topological ideas of a similar kind............................................
What Day is It?

Yesterday, Dad got confused about which day of the week it was.

‘Whenever we go on holiday, I forget,’ he said.

‘Friday,’ said Darren.

‘Saturday,’ his twin sister Delia contradicted.

‘What day is it tomorrow, then?’ asked Mum, trying to sort

out the dispute without too much stress.

‘Monday,’ said Delia.

‘Tuesday,’ said Darren.

‘Oh, for Heaven’s sake! What day was it yesterday, then?’

‘Wednesday,’ said Darren.

‘Thursday,’ said Delia.

‘Grrrrrrrr!’ said Mum, doing her famous Marge Simpson
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impression. ‘Each of you has given one correct answer and two

wrong ones.’

What day is it today?

Answer on page 288...........................................
Strictly Logical

Only an elephant or a whale gives birth to a creature that weighs

more than 100 kilograms.

The President weighs 150 kilograms.

Therefore . . .

(I learned this one from the writer and publisher Stefan

Themerson.)...........................................
Logical or Not?

If pigs had wings, they’d fly.

Pigs don’t fly if the weather is bad.

If pigs had wings, the sensible person would carry an

umbrella.

Therefore:

If the weather is bad, the sensible person would carry an

umbrella.

Is the deduction logically valid?

Answer on page 288...........................................
A Question of Breeding

Farmer Hogswill went to the village fete, where he met five of his

friends: Percy Catt, Dougal Dogge, Benjamin Hamster, Porky

Pigge and Zoe Zebra. By a remarkable coincidence – which was a

constant source of amusement – each of them was an expert
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breeder of one type of animal: cat, dog, hamster, pig and zebra.

Between them, they bred all five types. None bred an animal that

sounded like their surname.

‘Congratulations, Percy!’ said Hogswill. ‘I hear you’ve just

won third prize in the pig-breeding competition!’

‘That’s right,’ said Zoe.

‘And Benjamin got second for dogs!’

‘No,’ said Benjamin. ‘You knows fine well I never touches no

dogs. Nor zebras, neither.’

Hogswill turned to the person whose surname sounded like

the animals that Zoe bred. ‘And did you win anything?’

‘Yes, a gold medal for my prize hamster.’

Assuming that all statements except the alleged second for

dogs are true, who breeds what?

Answer on page 289...........................................
Fair Shares

In 1944, as the Russian army fought to reclaim Poland from the

Germans, the mathematician Hugo Steinhaus, trapped in the

city of Lvov, sought distraction in a puzzle. As you do.

The puzzle was this. Several people want to share a cake (by

all means replace that by a pizza if you wish). And they want the

procedure to be fair, in the sense that no one will feel that they

have got less than their fair share.

Steinhaus knew that for two people there is a simple method:

one person cuts the cake into two pieces, and the other chooses

which one they want. The second person can’t complain,

because they made the choice. The first person also can’t

complain – if they do, it was their fault for cutting the cake

wrongly.

How can three people divide a cake fairly?

Answer on page 289...........................................
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The Sixth Deadly Sin

It’s envy, and the problem is to avoid it.

Stefan Banach and Bronislaw Knaster extended Steinhaus’s

method of fair cake division to any number of people, and

simplified it for three people. Their work pretty much summed

up the whole area until a subtle flaw emerged: the procedure may

be fair, but it takes no account of envy. A method is envy-free if no

one thinks that anyone else has got a bigger share than they

have. Every envy-free method is fair, but a fair method need not

be envy-free. And neither Steinhaus’s method, nor that of

Banach and Knaster, is envy-free.

For example, Belinda may think that Arthur’s division is fair.

Then Steinhaus’s method stops after step 3, and both Arthur and

Belinda consider all three pieces to be of size 1/3. Charlie must

think that his own piece is at least 1/3, so the allocation is

proportional. But if Charlie sees Arthur’s piece as 1/6 and

Belinda’s as 1/2, then he will envy Belinda, because Belinda got

first crack at a piece that Charlie thinks is bigger than his.

Can you find an envy-free method for dividing a cake among

three people?

Answer on page 290...........................................
Weird Arithmetic

‘No, Henry, you can’t do that,’ said the teacher, pointing to

Henry’s exercise book, where he had written

1

4
6

8

5
¼ 18

45

‘Sorry, sir,’ said Henry. ‘What’s wrong? I checked it on my

calculator and it seemed to work.’

‘Well, Henry, the answer is right, I guess,’ the teacher

admitted. ‘Though you should probably cancel the 9’s to get 2
5,

which is simpler. What’s wrong is—’
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Explain the mistake to Henry. Then find all such sums, with

single non-zero digits in the first two fractions, that are correct.

Answer on page 291...........................................
How Deep is the Well?

In one episode of the television series Time Team, the indefatig-

able archaeologists want to measure the depth of a mediaeval

well. They drop something into it and time its fall, which takes an

amazingly long six seconds. You hear it clattering its way down

for ages. They come dangerously close to calculating the depth

using Newton’s laws of motion, but cop out at the last moment

and use three very long tape measures joined together instead.

The formula they very nearly state is

s ¼ 1
2 gt

2

where s is the distance travelled under gravity, falling from rest,

and g is the acceleration due to gravity. It applies when air

resistance can be ignored. This formula was discovered experi-

mentally by Galileo Galilei and later generalised by Isaac Newton

to describe motion under the influence of any force.

Taking g ¼ 10ms�2 (metres per second per second), how deep

is the well?

You’ve got three days to do it.

Answer on page 292...........................................
McMahon’s Squares

This puzzle was invented by the combinatorialist* P.A.

McMahon in 1921. He was thinking about a square that has been

divided into four triangular regions by diagonals. He wondered

how many different ways there are to colour the various regions,

* A combinatorialist is someone who invents this kind of thing.
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using three colours. He discovered that if rotations and

reflections are regarded as the same colouring, there are exactly

24 possibilities. Find them all.

Now, a 664 rectangle contains 24 161 squares. Can you fit

the 24 squares together to make such a rectangle, so that

adjacent regions have the same colour, and the entire perimeter

of the rectangle has the same colour?

Answer on page 292...........................................
What is the Square Root of Minus One?

The square root of a number is a number whose square is the

given one. For instance, the square root of 4 is 2. If we allow

negative numbers, then �2 is a second square root of 4 because

minus times minus makes plus. Since plus times plus also makes

plus, the square of any number – positive or negative – is always

positive. So it looks as though negative numbers, in particular

�1, can’t have square roots.

Despite this, mathematicians (and physicists and engineers

and indeed anyone working in any branch of science) have

found it useful to provide �1 with a square root. This is not a

number in the usual sense, so it is given a new symbol, which is i

if you are a mathematician, and j if you are an engineer.

Square roots of negative numbers first showed up in

mathematics around 1450, in an algebra problem. In those days

the idea was a huge puzzle, because people thought of a number

as something real. Even negative numbers caused a great deal of

head-scratching, but people quickly got accustomed to them

when they realised how useful they could be. Much the same

happened with i, but it took a lot longer.

A big issue was how to visualise i geometrically. Everyone had

got used to the idea of the number line, like an infinitely long

ruler, with positive numbers on the right and negative ones on

the left, and fractions and decimals in between:
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The ‘real’ number line.

Collectively, these familiar kinds of number became known

as real numbers, because they correspond directly to physical

quantities. You can observe 3 cows or 2.73 kilograms of sugar.

The puzzle was that there seemed to be nowhere on the real

number line for the ‘new’ number i. Eventually, mathematicians

realised that it didn’t have to go on the real number line. In fact,

being a new kind of number, it couldn’t go there. Instead, i had to

live on a second line, at right angles to the real number line:

The ‘imaginary’ number
line, placed at right
angles to the real one.

And if you added an imaginary number to a real one, the

answer had to live in the plane defined by the two lines:

A complex number is a
real one plus an
imaginary one.
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Multiplication was more complicated. The main point was

that multiplying a number by i rotated it around the origin O

through a right angle, anticlockwise. For instance, 3 multiplied

by i is 3i, and that’s what you get when you rotate the point

labelled 3 through 908.

The new numbers extended the familiar real number line to a

larger space, a number plane. Three mathematicians discovered

this idea independently: the Norwegian Caspar Wessel, the

Frenchman Jean-Robert Argand and the German Carl Friedrich

Gauss.

Complex numbers don’t turn up in everyday situations, such

as checking the supermarket bill or measuring someone for a

suit. Their applications are in things like electrical engineering

and aircraft design, which lead to technology that we can use

without having to know the underlying mathematics.

The engineers and designers need to know it, though............................................
The Most Beautiful Formula

Occasionally people hold polls for the most beautiful mathe-

matical formula of all time – yes, they really do, I’m not making

this up, honest – and nearly always the winner is a famous

formula discovered by Euler, which uses complex numbers to

link the two famous constants e and p. The formula is

eip ¼ �1

and it is extremely influential in a branch of maths known as

complex analysis............................................
Why is Euler’s Beautiful Formula True?

I often get asked whether there is a simple way to explain why

Euler’s formula eip ¼ �1 is true. It turns out that there is, but
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some preparation is needed – about two years of undergraduate

mathematics.

This is uncomfortably like the joke about the professor who

says in a lecture that some fact is obvious, and when challenged

goes away for half an hour and returns to say ‘yes, it is obvious,’

and then continues lecturing without further explanation. It just

takes two years instead of half an hour. So I’m going to give you

the explanation. Skip this bit if it doesn’t make sense – but it does

illustrate how higher mathematics sometimes gains new insights

by putting different ideas together in unexpected ways. The

necessary ingredients are some geometry, some differential

equations and a bit of complex analysis.

The main idea is to solve the differential equation

dz

dt
¼ iz

where z is a complex function of time t, with the initial

condition zð0Þ ¼ 1. It is standard in differential equations courses

that the solution is

zðtÞ ¼ eit

Indeed, you can define the exponential function ew this way.

Geometry of the
differential equation.

Now let’s interpret the equation geometrically.

Multiplication by i is the same as rotation through a right angle,

so iz is at right angles to z. Therefore the tangent vector iz(t) to

the solution at any point z(t) is always at right angles to the
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‘radius vector’ from 0 to z(t) and has length 1. Therefore the

solution z(t) always lies in the unit circle, and the point z(t)

moves round this circle with angular velocity 1 measured in

radians per second. (The radian measure of an angle is the length

of the arc of the unit circle corresponding to that angle.) The

circumference of the unit circle is 2p, so t ¼ p is halfway round

the circle. But halfway round is visibly the point z ¼ �1.

Therefore eip ¼ �1, which is Euler’s formula.

All the ingredients of this proof are well known, but the

overall package seems not to get much prominence. Its big

advantage is to explain why circles (leading to p) have anything

to do with exponentials (defined using e). So given the right

background, Euler’s formula ceases to be mysterious............................................
Your Call May be Monitored for Training
Purposes

‘The number you have dialled is imaginary. Please rotate your

phone 90 degrees and try again.’...........................................
Archimedes, You Old Fraud!

‘Give me a place to stand, and I will move the Earth.’ So,

famously, said Archimedes, dramatising his newly discovered

law of the lever. Which in this case takes the form

Force exerted by Archimedes

6distance from Archimedes to fulcrum

equals

Mass of Earth6distance from Earth to fulcrum

The fulcrum is the pivot – the black triangle in the picture:
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The law of the
lever.

Now, I don’t think Archimedes was interested in the position

of the Earth in space, but he did want the fulcrum to be fixed. (I

know he said ‘a place to stand’, but if the fulcrum moves, all bets

are off, so presumably that’s what he meant.) He also needed a

perfectly rigid lever of zero mass, and he probably didn’t realise

that he also needed uniform gravity, contrary to astronomical

fact, to convert mass to weight. No matter. I don’t want to get

into discussions about inertia or other quibbles. Let’s grant him

all those things. My question is: when the Earth moves, how far

does it move? And can Archimedes achieve the same result more

easily?

Answer on page 293...........................................
Fractals – The Geometry of Nature

Every so often, an entire new area of mathematics arises. One of

the best known in recent times is fractal geometry, pioneered by

Benoı̂t Mandelbrot, who coined the term ‘fractal’ in 1975.

Roughly speaking, it is a mathematical method for coming to

grips with apparent irregularities in the natural world, and

revealing hidden structure. The subject is best known for its

beautiful, complex computer graphics, but it goes far deeper than

that.
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Part of the
Mandelbrot
set, a famous
fractal.

The traditional shapes of Euclidean geometry are triangles,

squares, circles, cones, spheres, and the like. These shapes are

simple, and in particular they have no fine structure. If you

magnify a circle, for instance, any portion of it looks more and

more like a featureless straight line. Shapes like this have played a

prominent role in science – for instance, the Earth is close to a

sphere, and for many purposes that level of detail is good

enough.

Many natural shapes are far more complex. Trees are a mass

of branches, clouds are fuzzy and convoluted, mountains are

jagged, coastlines are wiggly . . . To understand these shapes

mathematically, and to solve problems about them, we need new

ingredients. The supply of problems, by the way, is endless – how

do trees dissipate the energy of the wind, how do waves erode a

coastline, how does water run off mountains into rivers? These

are practical issues, often related to ecology and the environ-

ment, not just theoretical problems.

Coastlines are a good example. They are wiggly curves, but

you can’t use any old wiggly curve. Coastlines have a curious

property: they look much the same on any scale of map. If the

map shows more detail, extra wiggles can be distinguished. The

exact shape changes, but the ‘texture’ seems pretty much the

same. The jargon here is ‘statistically self-similar’. All statistical

features of a coastline, such as what proportion of bays have a
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given relative size, are the same no matter what scale of

magnification you work on.

Mandelbrot introduced the word fractal to describe any shape

that has intricate structure no matter how much you magnify it.

It doesn’t have to be statistically self-similar – but such fractals

are easier to understand. And those that are exactly self-similar

are even nicer, which is how the subject started.

About a century ago, mathematicians invented a spate of

weird shapes, for various esoteric purposes. These shapes were

not just statistically self-similar – they were exactly self-similar.

When suitably magnified, the result looked identical to the

original. The most famous is the snowflake curve, invented by

Helge von Koch in 1904. It can be assembled from three copies of

the curve shown in the right-hand diagram.

The snowflake curve and successive stages in its construction.

This component curve (though not the whole snowflake) is

exactly self-similar. You can see that each stage in the

construction is made from four copies of the previous stage, each

one-third as big. The four copies are fitted together as in Stage 1.

Passing to the infinite limit, we obtain an infinitely intricate

curve that is built from four copies of itself, each one-third the

size – so it is self-similar.

Fractals – The Geometry of Nature // 191



Each quarter of the
curve, blown up to three
times the size, looks like
the original curve.

This shape is too regular to represent a real coastline, but it

has about the right degree of wiggliness, and less regular curves

formed in a similar way do look like genuine coastlines. The

degree of wiggliness can be represented by a number, called the

fractal dimension.

To see how this goes, I’m going to take some simpler non-

fractal shapes and see how they fit together at different scales of

magnification. If I break a line into pieces 1/5 the size, say, then I

need 5 of them to reconstruct the line. With a square, I need 25

pieces, which is 52. And with cubes I need 125, which is 53.

Effect of scaling on ‘cubes’ in 1, 2 and 3 dimensions.

The power of 5 occurring here is the same as the dimension

of the shape concerned: 1 for a line, 2 for a square, 3 for a cube.

In general, if the dimension is d and we have to fit k pieces of size

1/n together to reassemble the original shape, then k ¼ nd.

Taking logarithms, we find that

d ¼ log k

log n
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Now, taking a deep breath, we try this formula out on the

snowflake. Here we need k ¼ 4 pieces each 1/3 the size, so n ¼ 3.

Therefore our formula yields

d ¼ log 4

log 3

which is roughly 1.2618. So the ‘dimension’ of the snowflake

curve is not a whole number!

That would be bad if we wanted to think of ‘dimension’ in

the conventional way, as the number of independent directions

available. But it’s fine if we want a numerical measure of

wiggliness, based on self-similarity. A curve with dimension

1.2618 is more wiggly than a curve of dimension 1, such as a

straight line; but it is less wiggly than a curve of dimension 1.5,

say.

There are dozens of technically distinct ways to define the

dimension of a fractal. Most of them work when it is not self-

similar. The one used by mathematicians is called the Hausdorff–

Besicovitch dimension. It’s a pig to define and a pig to calculate,

but it has pleasant properties. Physicists generally use a simpler

version, called the box dimension. This is easy to calculate, but

lacks nearly all the pleasant properties of the Hausdorff–

Besicovitch dimension. Despite that, the two dimensions are

often the same. So the term fractal dimension is used to mean

either of them.

Fractals need not be curves: they can be highly intricate

surfaces or solids, or higher-dimensional shapes. The fractal

dimension then measures how rough the fractal is, and how

effectively it fills space. The fractal dimension turns up in most

applications of fractals, both in the theoretical calculations and

in experimental tests. For example, the fractal dimension of real

coastlines is generally close to 1.25 – surprisingly close to that of

the snowflake curve.

Fractals have come a long way, and they are now routinely

used as mathematical models throughout the sciences. They are

also the basis of an effective method for compressing computer
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files of video images. But their most interesting role is as ‘the’

geometry of many natural forms. A striking example is a kind of

cauliflower called Romanesco broccoli. You can find it in most

supermarkets. Each tiny floret has much the same form as the

whole cauliflower, and everything is arranged in a series of ever-

smaller Fibonacci spirals. This example is the tip of an iceberg –

the fractal structure of plants. While much remains to be sorted

out, it is already clear that the fractal structure arises from the

way plants grow, which in turn is regulated by their genetics. So

the geometry here is more than just a visual pun.

Romanesco
broccoli – you
can’t get much
more self-
similar than
that!

The applications of fractals are extensive, ranging from the

fine structure of minerals to the form of the entire universe.

Fractal shapes have been used to make antennas for mobile

phones – such shapes are more efficient. Fractal image com-

pression techniques cram huge quantities of data on to CDs and

DVDs. There are even medical applications: for example, fractal

geometry can be used to detect cancerous cells, whose surfaces

are wrinkly and have a higher fractal dimension than normal

cells.

About ten years ago a team of biologists (Geoffrey West,

James Brown and Brain Enquist) discovered that fractal geometry

can explain a long-standing puzzle about patterns in living

creatures. The patterns concerned are statistical ‘scaling laws’.

For example, the metabolic rates of many animals seem to be

proportional to the 3
4th power of their masses, and the time it
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takes for the embryo to develop is proportional to the �1
4th

power of the mass of the adult. The main enigma here is that

fraction 1
4. A power law with the value 1

3 could be explained in

terms of volume, which is proportional to the cube of the

creature’s length. But 1
4, and related fractions such as 3

4 or �1
4, are

harder to explain.

The team’s idea was an elegant one: a basic constraint on

how organisms can grow is the transport of fluids, such as blood,

around the body. Nature solves this problem by building a

branching network of veins and arteries. Such a network obeys

three basic rules: it should reach all regions of the body, it should

transport fluids using as little energy as possible, and its smallest

tubes should all be much the same size (because the tube can’t be

smaller than a single blood cell, or the blood can’t flow). What

shapes satisfy these conditions? Space-filling fractals – with the

fine structure cut off at the limiting size, that of the single cell.

This approach – which takes into account some important

physical and biological details, such as the flexibility of the tubes

and the occurrence of pulses in the blood as the heart beats –

predicts that elusive 1
4th power.

Fractal
branching of
blood vessels
in the lungs.

...........................................
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The Missing Symbol

Place a standard mathematical symbol between 4 and 5 to get a

number greater than 4 and less than 5.

Answer on page 294...........................................
Where There’s a Wall, There’s a Way

In the county of Hexshire, fields are separated by walls built from

the local stones – which for some reason are all made from

identical hexagonal lumps joined together. Perhaps they origi-

nated as basalt columns like the ones in the Giant’s Causeway.

Anyway, Farmer Hogswill has seven stones, each formed from

four hexagons. In fact, they are precisely the seven possible

combinations of four hexagons:

Seven stones
to make a wall.

He has to make a wall shaped like this:

The required
wall.

How can he do it? (He can rotate the stones and turn them

over to obtain their mirror images if necessary.)

Answer on page 294...........................................
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Constants to 50 Places

p 3.141 592653 589 793238 462 643 383279 502 884

197169 399 375 11

e 2.718 281828 459 045235 360 287 471352 662 497

757247 093 699 96

2
p

1.414 213562 373 095048 801 688 724209 698 078

569671 875 376 95

3
p

1.732 050807 568 877293 527 446 341505 872 366

942805 253 810 38

log 2 0.693 147180 559 945309 417 232 121458 176 568

075500 134 360 26

f 1.618 033988 749 894848 204 586 834365 638 117

720309 179 805 76

g 0.577 215664 901 532860 606 512 090082 402 431

042159 335 939 94

d 4.669 201609 102 990671 853 203 820466 201 617

258185 577 475 76

Here f is the golden number (page 96), g is Euler’s constant

(page 96), and d is the Feigenbaum constant, which is important in

chaos theory (page 117). See

en.wikipedia.org/wiki/Logistic_map

mathworld.wolfram.com/FeigenbaumConstant.html...........................................
Richard’s Paradox

In 1905 Jules Richard, a French logician, invented a very curious

paradox. In the English language, some sentences define positive

integers and others do not. For example ‘The year of the

Declaration of Independence’ defines 1776, whereas ‘The

historical significance of the Declaration of Independence’ does

not define a number. So what about this sentence: ‘The smallest

number that cannot be defined by a sentence in the English

language containing fewer than 20 words.’ Observe that what-
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ever this number may be, we have just defined it using a sentence

in the English language containing only 19 words. Oops.

A plausible way out is to say that the proposed sentence does

not actually define a specific number. However, it ought to. The

English language contains a finite number of words, so the

number of sentences with fewer than 20 words is itself finite. Of

course, many of these sentences make no sense, and many of

those that do make sense don’t define a positive integer – but

that just means that we have fewer sentences to consider.

Between them, they define a finite set of positive integers, and it

is a standard theorem of mathematics that in such circumstances

there is a unique smallest positive integer that is not in the set. So

on the face of it, the sentence does define a specific positive

integer.

But logically, it can’t.

Possible ambiguities of definition such as ‘A number which

when multiplied by zero gives zero’ don’t let us off the logical

hook. If a sentence is ambiguous, then we rule it out, because an

ambiguous sentence doesn’t define anything. Is the troublesome

sentence ambiguous, then? Uniqueness is not the issue: there

can’t be two distinct smallest-numbers-not-definable-(etc.),

because one must be smaller than the other.

One possible escape route involves how we decide which

sentences do or do not define a positive integer. For instance, if

we go through them in some kind of order, excluding bad ones

in turn, then the sentences that survive depend on the order in

which they are considered. Suppose that two consecutive

sentences are:

(1) The number in the next valid sentence plus one.

(2) The number in the previous valid sentence plus two.

These sentences cannot both be valid – they would then

contradict each other. But once we have excluded one of them,

the other one is valid, because it now refers to a different

sentence altogether.
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Forbidding this type of sentence puts us on a slippery slope,

with more and more sentences being excluded for various

reasons. All of which strongly suggests that the alleged sentence

does not, in fact, define a specific number – even though it seems

to............................................
Connecting Utilities

Three houses have to be connected to three utility companies –

water, gas and electricity. Each house must be connected to all

three utilities. Can you do this without the connections crossing?

(Work ‘in the plane’ – there is no third dimension in which

pipes can be passed over or under cables. And you are not

allowed to route cables or pipes through a house or a utility

company building.)

Connect houses to
utilities with no
crossings.

Answer on page 294...........................................
Are Hard Problems Easy?

or
How to Win a Million Dollars by Proving the
Obvious

Naturally, it’s not that obvious. TANSTAAFL, as science fiction

author Robert A. Heinlein used to say – There Ain’t No Such

Thing As A Free Lunch. But we can all dream.

I’m referring here to one of the seven Millennium Prize

Are Hard Problems Easy? // 199



Problems (page 127), whose solution will leave some lucky

person a million dollars better off. Technically, it is known as

‘P¼NP?’ which is a pretty silly name. But what it’s about is of

vital importance: inherent limits to the efficiency of computers.

Computers solve problems by running programs, which are

lists of instructions. A program that always stops with the right

answer (assuming that the computer is doing what its designers

think it should) is called an ‘algorithm’. The name honours the

Arabic mathematician Abu Ja’far Muhammad ibn Musa al-

Khwarizmi, who lived around AD 800 in present-day Iraq. His

book Hisab al-jabr w’al-muqabala gave us the word ‘algebra’, and

it consists of a series of procedures – algorithms – for solving

algebraic equations of various kinds.

An algorithm is a method for solving a specific type of

problem, but it is useless in practice unless it delivers the answer

reasonably quickly. The theoretical issue here is not how fast the

computer is, but how many calculations the algorithm has to

perform. Even for a specific problem – to find the shortest route

that visits a number of cities in turn, say – the number of

calculations depends on how complicated the question is. If

there are more cities to visit, the computer will have to do more

work to find an answer.

For these reasons, a good way to measure the efficiency of an

algorithm is to work out how many computational steps it takes

to solve a problem of a given size. There is a natural division into

‘easy’ calculations, where the size of the calculation is some fixed

power of the input data, and ‘hard’ ones, where the growth rate

is much faster, often exponential. Multiplying two n-digit

numbers together, for example, can be done in about n2 steps

using good old-fashioned long multiplication, so this calculation

is ‘easy’. Finding the prime factors of an n-digit number, on the

other hand, takes about 3n steps if you try every possible divisor

up to the square root of n, which is the most obvious approach,

so this calculation is ‘hard’. The algorithms concerned are said to

run in polynomial time (class P) and non-polynomial time (not-P),

respectively.

200 // Are Hard Problems Easy?



Working out how quickly a given algorithm runs is relatively

straightforward. The hard bit is to decide whether some other

algorithm might be faster. The hardest of all is to show that what

you’ve got is the fastest algorithm that will work, and basically

we don’t know how to do that. So problems that we think are

hard might turn out to be easy if we found a better method for

solving them, and this is where the million dollars comes in. It

will go to whoever manages to prove that some specific problem

is unavoidably hard – that no polynomial-time algorithm exists

to solve it. Or, just possibly, to whoever proves that There Ain’t

No Such Thing As A Hard Problem – though that doesn’t seem

likely, the universe being what it is.

Before you rush out to get started, though, there are a couple

of things you should bear in mind. The first is that there is a

‘trivial’ type of problem that is automatically hard, simply

because the size of the output is gigantic. ‘List all ways to

rearrange the first n numbers’ is a good example. However fast

the algorithm might be, it takes at least n! steps to print out the

answer. So this kind of problem has to be removed from

consideration, and this is done using the concept of a non-

deterministic polynomial time, or NP, problem. (Note that NP is

different from not-P.) These are the problems where you can

verify a proposed answer in polynomial time – that is, easily.

My favourite example of an NP problem is solving a jigsaw

puzzle. It may be very hard to find a solution, but if someone

shows you an allegedly completed puzzle you can tell instantly

whether they’ve done it right. A more mathematical example is

finding a factor of a number: it is much easier to divide out and

see whether some number works than it is to find that number in

the first place.

The P¼NP? problem asks whether every NP problem is P.

That is, if you can check a proposed answer easily, can you find it

easily? Experience suggests very strongly that the answer should

be ‘no’ – the hard part is to find the answer. But, amazingly, no

one knows how to prove that, or even whether it’s correct. And

that’s why you can pocket a million bucks for proving that P is
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different from NP, or indeed for proving that, on the contrary,

the two are equal.

As a final twist, it turns out that all likely candidates to show

that P 6¼ NP are in some sense equivalent. A problem is called NP-

complete if a polynomial-time algorithm to solve that particular

problem automatically leads to a polynomial-time algorithm to

solve any NP problem. Almost any reasonable candidate for

proving that P 6¼ NP is known to be NP-complete. The nasty

consequence of this fact is that no particular candidate is likely

to be more approachable than any of the others – they all live or

die together. In short: we know why P¼NP? must be a very hard

problem, but that doesn’t help us to solve it.

I suspect that there are far easier ways to make a million............................................
Don’t Get the Goat

There used to be an American game show, hosted by Monty Hall,

in which the guest had to choose one of three doors. Behind one

was an expensive prize – a sports car, say. Behind the other two

were booby prizes – goats.

After the contestant had chosen, Hall would open one of the

other doors to reveal a goat. (With two doors to choose from, he

could always do this – he knew where the car was.) He would

then offer the contestant the chance to change their mind and

choose the other unopened door.

Hardly anyone took this opportunity – perhaps with good

reason, as I’ll eventually explain. But for the moment let’s take

the problem at face value, and assume that the car has equal

probability (one in three) of being behind any given door. We’ll

assume also that everyone knows ahead of time that Hall always

offers the contestant a chance to change their mind, after

revealing a goat. Should they change?

The argument against goes like this: the two remaining doors

are equally likely to conceal a car or a goat. Since the odds are

fifty–fifty, there’s no reason to change.
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Or is there?

Answer on page 296...........................................
All Triangles are Isosceles

This puzzle requires some knowledge of Euclidean geometry,

which nowadays isn’t taught . . . Ho hum. It’s still accessible if

you’re prepared to take a few facts on trust.

An isosceles triangle has two sides equal. (The third could also

be equal: this makes the triangle equilateral, but it still counts as

isosceles too.) Since it is easy to draw triangles with all three sides

different, the title of this section is clearly false. Nevertheless,

here is a geometric proof that it is true.

This triangle is isosceles –
except that it clearly isn’t.

(1) Take any triangle ABC.

(2) Draw a line CX that cuts the top angle in half, so that angles a

and b are equal. Draw a line MX at right angles to the bottom

edge at its midpoint, so that AM = MB. This meets the previous

line, CX, somewhere inside the triangle at the point X.

(3) Draw lines from X to the other two corners A and B. Draw XD

and XE to make angles c, d, e and f all right angles.

(4) Triangles CXD and CXE are congruent – that is, they have the

same shape and size (though one is the other flipped over). The
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reason is that angles a and b are equal, angles c and d are equal,

and the side CX is common to both triangles.

(5) Therefore lines CD and CE are equal.

(6) So are lines XD and XE.

(7) Since M is the midpoint of AB and MX is at right angles to

AB, the lines XA and XB are equal.

(8) But now triangles XDA and XEB are congruent. The reason is

that XD = XE, XA = XB and angle e equals angle f.

(9) Therefore DA = EB.

(10) Combining steps 5 and 9: CA ¼ CDþDA ¼ CEþ EB ¼ CB.

So lines CA and CB are equal, and triangle ABC is isosceles.

What’s wrong here? (Hint: it’s not the use of congruent triangles.)

Answer on page 298...........................................
Square Year

It was midnight on 31 December 2001, and Alfie and Betty – both

of whom were aged less than sixty – were talking about the

calendar.

‘At some time in the past, the year was the square of my

father’s age,’ said Betty proudly. ‘He died at the age of a

hundred!’

‘And at some time in the future, the year will be the square of

my age,’ Alfie replied. ‘I don’t know whether I’ll reach a hundred,

though.’

In which years were Betty’s father and Alfie born?

Answer on page 298...........................................
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Gödel’s Theorems

In 1931 the mathematical logician Kurt Gödel proved two

important theorems, of great originality, which placed un-

avoidable limits on the power of formal reasoning in mathe-

matics. Gödel was responding to a research programme initiated

by David Hilbert, who was convinced that the whole of

mathematics could be placed on an axiomatic basis. Which is to

say it should be possible to state a list of basic assumptions, or

‘axioms’, and deduce the rest of mathematics from the axioms.

Additionally, Hilbert expected to be able to prove two key

properties:

. The system is logically consistent – it is not possible to deduce

two statements that contradict each other.

. The system is complete – every statement has either a proof or

a disproof.

The kind of axiomatic ‘system’ that Hilbert had in mind was

more basic than, say, arithmetic – something like the theory of

sets introduced by Georg Cantor in 1879 and developed over the

next few years. Starting from sets, there are ways to define whole

numbers, the usual operations of arithmetic, negative and

rational numbers, real numbers, complex numbers, and so on. So

placing set theory on an axiomatic basis would automatically do

the same for the rest of mathematics. And proving that the

axiomatic system for set theory is consistent and complete would

also do the same for the rest of mathematics. Since set theory is

conceptually simpler than arithmetic, this seemed a sensible way

to proceed. In fact, there was even a candidate axiomatisation of

set theory, developed by Betrand Russell and Alfred North

Whitehead in their three-volume epic Principia Mathematica.

There were various alternatives, too.

Hilbert pushed a substantial part of his programme through

successfully, but there were still some gaps when Gödel arrived

on the scene. Gödel’s 1931 paper ‘On Formally Undecidable

Propositions in Principia Mathematica and Related Systems I’ left
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Hilbert’s programme in ruins, by proving that no such approach

could ever succeed.

Gödel went to great lengths to place his proofs in a rigorous

logical context, and to avoid several subtle logical traps. In fact

most of his paper is devoted to setting up these background

ideas, which are very technical – ‘recursively enumerable sets’.

The climax to the paper can be stated informally, as two

dramatic theorems:

. In a formal system that is rich enough to include arithmetic,

there exist undecidable statements – statements that can

neither be proved nor disproved within that system.

. If a formal system that is rich enough to include arithmetic is

logically consistent, then it is impossible to prove its

consistency within that system.

The first theorem does not just indicate that finding a proof or

disproof of the appropriate statement is difficult. It established

that no proof exists, and no disproof exists. It means that the

logical distinction between ‘true’ and ‘false’ is not identical to

that between ‘provable’ and ‘disprovable’. In conventional logic

– including that used in Principia Mathematica – every statement

is either true or false, and cannot be both. Since the negation

not-P of any true statement P is false, and the negation of a false

statement is true, conventional logic obeys the ‘law of the

excluded middle’: given any statement P, then exactly one of P

and not-P is true, and the other is false. Either 2þ2 is equal to 4,

or 2þ2 is not equal to 4. It has to be one or the other, and it can’t

be both.

Now, if P has a proof, then P must be true – this is how

mathematicians establish the truth (in a mathematical sense) of

their theorems. If P has a disproof, then not-P must be true, so P

must be false. But Gödel proved that for some statements P,

neither P nor not-P has a proof. So a statement can be provable,

disprovable – or neither. If it’s neither, it is said to be

‘undecidable’. So now there is a third possibility, and the

‘middle’ is no longer excluded.
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Before Gödel, mathematicians had happily assumed that

anything true was provable, and anything false was disprovable.

Finding the proof or disproof might be very hard, but there was

no reason to doubt that one or the other must exist. So

mathematicians considered ‘provable’ to be the same as ‘true’,

and ‘disprovable’ to be the same as ‘false’. And they felt happier

with practical concepts of proof and disproof than with deep and

tricky philosophical concepts like truth and falsity, so mostly

they settled for proofs and disproofs. And so it was disturbing to

discover that these left a gap, a kind of logical no-man’s-land.

And in ordinary arithmetic, too!

Gödel set up his undecidable statement by finding a formal

version of the logical paradox ‘this statement is false’, or more

accurately of ‘this statement has no proof’. However, in

mathematical logic a statement is not permitted to refer to itself

– in fact, ‘this statement’ is not something that has a meaning

within the formal system concerned. Gödel found a cunning way

to achieve much the same result without breaking the rules, by

associating a numerical code with each formal statement. Then a

proof of any statement corresponded to some sequence of

transformations of the corresponding code number. So the

formal system could model arithmetic – but arithmetic could

also model the formal system.

Within this set-up, and assuming the formal system to be

logically consistent, the statement P whose interpretation was

basically ‘this statement has no proof’ must be undecidable. If P

has a proof, then P is true, so by its defining property P has no

proof – a contradiction. But the system is assumed to be

consistent, so that can’t happen. On the other hand, if P has no

proof, then P is true. Therefore not-P has no proof. So neither P

nor not-P has a proof.

From here it is a short step to the second theorem – if the

formal system is consistent, then there can’t be a proof that it is.

I’ve always thought this to be rather plausible. Think of

arithmetic as a used car salesman. Hilbert wanted to ask the

salesman ‘are you honest?’ and get an answer that guaranteed
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that he was. Gödel basically argued that if you ask him this

question and he says ‘Yes, I am,’ that is no guarantee of honesty.

Would you believe that someone is telling the truth because they

tell you they are? A court of law certainly would not.

Because of the technical complications, Gödel proved his

theorems within one specific formal system for arithmetic, the

one in Principia Mathematica. So a possible consequence might

have been that this system is inadequate, and something better is

needed. But Gödel pointed out in the introduction to his paper

that a similar line of reasoning would apply to any alternative

formal system for arithmetic. Changing the axioms wouldn’t

help. His successors filled in the necessary details, and Hilbert’s

programme was a dead duck.

Several important mathematical problems are now known to

be undecidable. The most famous is probably the halting

problem for Turing machines – which in effect asks for a method

to determine in advance whether a computer program will

eventually stop with an answer, or go on for ever. Alan Turing

proved that some programs are undecidable – there is no way to

prove that they stop, and no way to prove that they don’t............................................
If p isn’t a Fraction, How Can You Calculate It?

The school value 22/7 for p is not exact. It’s not even terribly

good. But it is good for something so simple. Since we know that

p is not an exact fraction, it’s not obvious how it can be

calculated to very high accuracy. Mathematicians achieve this

using a variety of cunning formulas for p, all of which are exact,

and all of which involve some process that goes on for ever. By

stopping before we get to ‘for ever’, a good approximation to p

can be found.

In fact, mathematics presents us with an embarrassment of

riches, because one of the perennial fascinations of p is its

tendency to appear in a huge variety of beautiful formulas.

Typically they are infinite series, infinite products or infinite
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fractions (indicated by the dots . . . ) – which should not be a

surprise since there is no simple finite expression for p, unless you

cheat with integral calculus. Here are a few of the high points.

The first formula was one of the earliest expressions for p,

discovered by François Viète in 1593. It is related to polygons

with 2n sides:

2

p
¼

ffiffiffi
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2
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6
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The next was found by John Wallis in 1655:

p
2
¼ 2

1
6

2
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6

4

3
6
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6
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7
6
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6 . . .

Around 1675, James Gregory and Gottfried Leibniz both

discovered

p
4
¼ 1� 1

3
þ 1

5
� 1

7
þ 1

9
� 1

11
þ 1

13
� . . .

This converges too slowly to be of any help in calculating p; that

is, a good approximation requires oodles of terms. But closely

related series were used to find several hundred digits of p in the

eighteenth and nineteenth centuries. In the seventeenth cen-

tury, Lord Brouncker discovered an infinite ‘continued fraction’:

p ¼ 4

1þ 12

2þ 32

2þ 52

2þ 72

2þ . . .

and Euler discovered a pile of formulas like these:

p2 ¼ 1þ 1

22
þ 1

32
þ 1

42
þ 1

52
þ 1

62
þ . . .

p3

32
¼ 1� 1

33
þ 1

33
� 1

73
þ 1

93
� 1

113
þ . . .

p4

90
¼ 1þ 1

24
þ 1

34
þ 1

44
þ 1

54
þ 1

64
þ . . .
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(By the way, there seems to be no such formula for

1þ 1

23
þ 1

33
þ 1

43
þ 1

53
þ 1

63
þ . . .

which is very mysterious and not fully understood. In particular,

this sum is not any simple rational number times p3. We do

know that the sum of the series is irrational.)

For the other formulas, we’ll need the ‘sigma notation’ for

sums. The idea is that: we can write the series for p2=6 in the

more compact form

p2

6
¼

X?
n¼1

1

n2

Letme unpack this. The fancy S symbol is Greek capital sigma, for

‘sum’, and it tells you to add together all the numbers to its right,

namely 1=n2. The ‘n ¼ 1’ below the S says that we start adding

from n ¼ 1, and by convention n runs through the positive

integers. The symbol? over the Swhich means ‘infinity’, tells us

to keep adding these numbers for ever. So this is the same series

for p2=6 that we saw earlier, but written as an instruction ‘Add the

terms 1=n2, for n ¼ 1;2;3, and so on, going on for ever.’

Around1985, JonathanandPeterBorweindiscovered theseries

1

p
¼ 2

ffiffiffi
2

p

9;801

X?
n¼0

ð4nÞ!
ðn!Þ4 6

1;103þ 26;390n

ð4699Þ4n

which converges extremely rapidly. In 1997 David Bailey, Peter

Borwein and Simon Plouffe found an unprecedented formula,

p ¼
X?
n¼0

4

8nþ 1
� 2

8nþ 4
–

1

8nþ 5
–

1

8nþ 6

� �
1

16

� �n

Why is this so special? It allows us to calculate a specific digit of p

without calculating the preceding digits. The only snag is that

these are not decimal digits: they are hexadecimal (base 16), from

which we can also work out a given digit in base 8 (octal), 4

(quaternary) or 2 (binary). In 1998 Fabrice Ballard used this

formula to show that the 100 billionth hexadecimal digit of p
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is 9. Within two years, the record had risen to 250 trillion

hexadecimal digits (one quadrillion binary digits).

The current record for decimal digits of p is held by Yasumasa

Kanada and coworkers, who computed the first 1.2411 trillion

digits in 2002............................................
Infinite Wealth

During the early development of probability theory, a lot of

effort was expended – mainly by various members of the

Bernoulli family, which had four generations of able mathemat-

icians – on a strange puzzle, the St Petersburg paradox.

You play against the bank, tossing a coin until it first lands

heads. The longer you keep tossing tails, the more the bank will

pay out. In fact, if you toss heads on the first try, the bank pays you

£2. If youfirst toss heads on the second try, the bankpays you£4. If

you first toss heads on the third try, the bank pays you £8. In

general, if youfirst toss heads on the nth try, the bankpays you £2n.

The question is: how much should you be willing to pay to

take part in the game?

To answer this, you should calculate your ‘expected’

winnings, in the long run, and the rules of probability tell you

how. The probability of a head on the first toss is 1
2, and you then

win £1, so the expected gain on the first toss is 1
262 ¼ 1. The

probability of a head first arising on the second toss is 1
4, and you

then win £4, so the expected gain on the second toss is 1
464 ¼ 1.

Continuing in this way, the expected gain on the nth toss is
1
2 n62n ¼ 1. In total, your expected winnings amount to

1þ 1þ 1þ 1þ . . .

going on forever, which is infinite. Therefore you should pay the

bank an infinite amount to play the game.

What—if anything—is wrong here?

Answer on page 299...........................................
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Let Fate Decide

Two university mathematics students are trying to decide how to

spend their evening.

‘We’ll toss a coin,’ says the first. ‘If it’s heads, we’ll go to the

pub for a beer.’

‘Great!’ says the second. ‘If it’s tails, we’ll go to the movies.’

‘Exactly. And if it lands on its edge, we’ll study.’

Comment: Twice in my life I have witnessed a coin land on its

edge. Once was when I was seventeen, playing a game with some

friends, and the coin landed in a groove in the table. The second

was in 1997, when I gave the Royal Institution Christmas

Lectures on BBC Television. We made a large coin from

polystyrene, and a young lady from the audience tossed it in a

frying-pan like a pancake. The first time she did so, the coin

landed stably on its edge.

Admittedly, it was a rather thick coin............................................
How Many—

Different sets of bridge hands are there?

53;644;737;765;488;792;839;237;440;000

if you distinguish hands according to who (N, S, E, W) holds

them. If not, divide by 8 (the N–S and E–W pairing has to be

maintained) to get

6;705;592;220;686;099;104;904;680;000

Protons are there in the universe according to Sir Arthur Stanley

Eddington?

13662256 ¼15;747;724;136;275;002;577;605;653;961;181;

555;468;044;717;914;527;116;709;366;231;425;

076;185;631;031;296
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Ways are there to rearrange the first 100 numbers?

93;326;215;443;944;152;681;699;238;856;266;700;490;715;

968;264;381;621;468;592;963;895;217;599;993;229;915;608;

941;463;976;156;518;286;253;697;920;827;223;758;251;185;

210;916;864;000;000;000;000;000;000;000;000

unless you argue that ‘rearrange’ excludes the usual ordering

1; 2; 3; . . .; 100: If so, the number is

93;326;215;443;944;152;681;699;238;856;266;700;490;715;

968;264;381;621;468;592;963;895;217;599;993;229;915;608;

941;463;976;156;518;286;253;697;920;827;223;758;251;185;

210;916;863;999;999;999;999;999;999;999;999

Zeros are there in a googol?

100

Googol is a name invented in 1920 by Milton Sirotta (aged 9),

nephew of American mathematician Edward Kasner, who

popularised the term in his book Mathematics and the

Imagination. It is equal to 10100, which is 1 followed by one

hundred zeros:

10;000;000;000;000;000;000;000;000;000;000;000;000;000;

000;000;000;000;000;000;000;000;000;000;000;000;000;000;

000;000;000;000;000;000

Zeros are there in a googolplex?

10100

Googolplex is another invented name, equal to 1010
100

, which is 1

followed by 10100 zeros. The universe is too small to write it down

in full, and the lifetime of the universe is too short anyway.

Unless our universe is part of a much larger multiverse, and even

then it’s hard to see why anyone would bother............................................
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What Shape is a Rainbow?

Why?

We all remember being told what causes rainbows. Sunlight

bounces around inside raindrops, which split the white light into

its component colours. Whenever you look directly at a rainbow,

the Sun will be behind you, and the rain will be falling in front of

you. And to knock it on the head, the teacher showed us how a

glass prism splits a ray of white light into all the colours of the

rainbow.

A neat piece of misdirection, worthy of a conjurer. That

explains the colours. But what about the shape?

If it’s just a matter of light reflecting back from raindrops,

why don’t we see the colours wherever the rain is coming down?

And if that were happening, wouldn’t the colours fuzz out back

to white, or maybe a muddy grey? Why is the rainbow a series of

coloured arcs? And what shape are the arcs?

Answers on page 300...........................................
Alien Abduction

Two aliens from the planet Porqupyne want to abduct two

Earthlings, but are blissfully unaware that the objects of their
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attention are actually pigs. In their formal way, the aliens play a

game.

First catch your pig . . .

On the first move, each alien moves one square horizontally

or vertically (not diagonally). Each alien can move in any of the

four directions, independently of what the other one does. On

the next move, the pigs can do likewise. The aliens get to abduct

any pig upon whose square they land. To their surprise, the pigs

always seem to get away. What are the aliens doing wrong?

Answers on page 302...........................................
The Riemann Hypothesis

If there is one single problem that mathematicians would dearly

love to solve, it is the Riemann Hypothesis. Entire areas of

mathematics would open up if some bright spark could prove

this wonderful theorem. And entire areas of mathematics would

close down if some bright spark could disprove it. Right now,

those areas are in limbo. We can get a glimpse of the Promised

Land, but for all we know it might be a mirage.

Oh, there’s also a million-dollar prize on offer from the Clay

Mathematics Institute.

The story goes back to the time of Gauss, around 1800, and

the discovery that although the prime numbers seem rather

randomly distributed doing the number line, they have clear

statistical regularities. Various mathematicians noticed that the

number of primes up to some number x, denoted by pðxÞ just to
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confuse everyone who thought that p ¼ 3:141 59, is approxi-

mately

pðxÞ ¼ x

log x

Gauss found what seemed to be a slightly better approximation,

the logarithmic integral

LiðxÞ ¼
Z x

2

dx

log x

Now, it’s one thing to notice this ‘prime number theorem’, but

what counts is proving it, and that turned out to be hard. The

most powerful approach is to turn the question into something

quite different, in this case complex analysis. The connection

between primes and complex functions is not at all obvious, but

the key idea was spotted by Euler.

Every positive integer is a product of primes in a unique way.

We can formulate this basic property analytically. A first attempt

would be to notice that

ð1þ 2þ 22 þ 23 þ . . .Þ6ð1þ 3þ 32 þ 33 þ . . .Þ
6ð1þ 5þ 52 þ 53 þ . . .Þ6 . . .

with each bracketed series going on for ever, and taking the

product over all primes, is equal to

1þ 2þ 3þ 4þ 5þ 6þ 7þ 8þ . . .

summed over all integers. For example, to find out where a

number like 360 comes from, we write it as a product of primes

360 ¼ 2363265

and then pick out from the formula the corresponding terms,

here shown in bold:

ð1þ 2þ 22 þ 23 þ . . .Þ6ð1þ 3þ 32 þ 33 þ . . .Þ
6ð1þ 5þ 52 þ 53 þ . . .Þ6 . . .

When you ‘expand’ the brackets, each possible product of prime

powers occurs exactly once.
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Unfortunately this makes no sense because the series diverge

to infinity, and so does the product. However, if we replace each

number n by a suitable power n�s, and make s large enough,

everything converges. (The minus sign ensures that large values

of s lead to convergence, which is more convenient.) So we get

the formula

ð1þ 2�s þ 2�2s þ 2�3s þ . . .Þ6ð1þ 3�s þ 3�2s þ 3�3s þ . . .Þ
6ð1þ 5�s þ 5�2s þ 5�3s þ . . .Þ6 . . .

¼ 1þ 2�s þ 3�s þ 4�s þ 5�s þ 6�s þ 7�s þ 8�s þ . . .

(where I’ve written 1 instead of 1�s because these are equal

anyway.) This formula makes perfectly good sense provided s is

real and greater than 1. It’s true because

60–s ¼ 2–3s63–2s65–s

and similarly for any positive integer.

In fact, the formula makes perfectly good sense if s = aþib is

complex and its real part a is greater than 1. The final series in

the formula is called the Riemann zeta function of s, denoted by

zðsÞ. Here z is the Greek letter zeta.

In 1859 Georg Riemann wrote a brief, astonishingly inven-

tive paper showing that the analytic properties of the zeta

function reveal deep statistical features of primes, including

Gauss’s prime number theorem. In fact, he could do more: he

could make the error in the approximation of pðxÞ much smaller,

by adding further terms to Gauss’s expression. Infinitely many

such terms, themselves forming a convergent series, would make

the error disappear altogether. Riemann could write down an

exact expression for pðxÞ as an analytic series.

For the record, here’s his formula:

pðxÞ þ pðx1=2Þ þ pðx1=3Þ þ . . .

¼ LiðxÞ þ
Z ?

x

ðt2 � 1Þt log t
� ��1

t� log 2�
X
r

LiðxrÞ

where r runs through the non-trivial zeros of the zeta function.

Strictly speaking, this formula is not quite correct when the left-
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hand side has discontinuities, but that can be fixed up. You can

get an even more complicated formula for pðxÞ itself by applying

the formula again with x replaced by x1=2;x1=3, and so on.

All very pretty, but there was one tiny snag. In order to prove

that his series is correct, Riemann needed to establish an

apparently straightforward property of the zeta function.

Unfortunately, he couldn’t find a proof.

All complex analysts learn at their mother’s knee (the mother

here being Augustin-Louis Cauchy, who along with Gauss first

understood the point) that the best way to understand any

complex function is to work out where its zeros lie. That is: which

complex numbers s make zðsÞ ¼ 0? Well, it becomes the best way

after some nifty footwork; in the region where the series for zðsÞ
converges, there aren’t any zeros. However, there is another

formula which agrees with the series whenever it converges, but

also makes sense when it doesn’t. This formula lets us extend the

definition of zðsÞ so that it makes sense for all complex numbers

s. And this ‘analytic continuation’ of the zeta function does have

zeros. Infinitely many of them.

Some of the zeros are obvious – once you see the formula

involved in the continuation process. These ‘trivial zeros’ are the

negative even integers �2; �4; �6, and so on. The other zeros

come in pairs aþ ib and a� ib, and all such zeros that Riemann

could find had a ¼ 1
2. The first three pairs, for instance, are

1
2+14:13i; 1

2+21:02i; 1
2+25:01i

Evidence like this led Riemann to conjecture (‘hypothesise’) that

all non-trivial zeros of the zeta function must lie on the so-called

critical line 1
2 þ ib.

If he could prove this statement – the famous Riemann

Hypothesis – then he could prove that Gauss’s approximate

formula for pðxÞ is correct. He could improve it to an exact –

though complicated – formula. Great vistas of number theory

would be wide open for development.

But he couldn’t, and we still can’t.

Eventually, the prime number theorem was proved, inde-
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pendently, by Jacques Hadamard and Charles de la Vallée-

Poussin in 1896. They used complex analysis, but managed to

find a proof that avoided the Riemann Hypothesis. We now

know that the first ten trillion non-trivial zeros of the zeta

function lie on the critical line, thanks to Xavier Gourdon and

Patrick Demichel in 2004. You might think that ought to settle

the matter, but in this area of number theory ten trillion is

ridiculously small, and may be misleading.

The Riemann Hypothesis is important for several reasons. If

true, it would tell us a lot about the statistical properties of

primes. In particular, Helge von Koch proved in 1901 that the

Riemann Hypothesis is true if and only if the estimate

jpðxÞ � LiðxÞj < C
ffiffiffi
x

p
log x

for the error in Gauss’s formula holds for some constant C. Later,

Lowell Schoenfeld proved that we can take C ¼ 1=8p for all

x52;657. (Sorry, this area of mathematics does that kind of

thing.) The point here is that the error is small compared with x,

and it tells us how much the primes fluctuate away from their

more typical behaviour.

Riemann’s exact formula, of course, would also follow from

the Riemann Hypothesis. So would a huge list of other

mathematical results – you can find some of them at

en.wikipedia.org/wiki/Riemann_hypothesis

However, the main reason why the Riemann Hypothesis is

important – apart from ‘because it’s there’ – is that it has a lot of

far-reaching analogues and generalisations in algebraic number

theory. A few of the analogues have even been proved. There is a

feeling that if the Riemann Hypothesis can be proved in its

original form, then so can the generalisations. These ideas are

too technical to describe, but see mathworld.wolfram.com/

RiemannHypothesis.html

I will tell you one deceptively simple statement that is

equivalent to the Riemann Hypothesis. Of itself, it looks

harmless and unimportant. Not so! Here’s how it goes. If n is a
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whole number, then the sum of its divisors, including n itself, is

written as sðnÞ. (Here s is the lower-case Greek letter ‘sigma’.) So

sð24Þ ¼ 1þ 2þ 3þ 4þ 6þ 8þ 12þ 24 ¼ 60

sð12Þ ¼ 1þ 2þ 3þ 4þ 6þ 12 ¼ 28

and so on. In 2002 Jeffrey Lagarias proved that the Riemann

Hypothesis is equivalent to the inequality

sðnÞ4eHn log Hn

for every n. Here Hn is the nth harmonic number, equal to

1þ 1

2
þ 1

3
þ 1

4
þ . . .

1

n

...........................................
Anti-Atheism

Godfrey Harold Hardy, a Cambridge mathematician who worked

mainly in analysis, claimed to believe in God – but unlike most

believers, he considered the Deity to be his personal enemy.

Hardy had it in for God, and he was convinced that God had it in

for Hardy, which was only fair. Hardy was especially worried

whenever he travelled by sea, in case God sank the boat. So

before travelling, he would send his colleagues a telegram: ‘HAVE

PROVED RIEMANN HYPOTHESIS. HARDY.’ He would then retract this

claim on arrival.

As just discussed, the Riemann Hypothesis is the most

famous unsolved problem in mathematics, and one of the most

important. And so it was in Hardy’s day, too. When his

colleagues asked him why he sent such telegrams, he explained

that God would never let him die if that would give him credit –

however controversial – for proving the Riemann Hypothesis............................................
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Disproof of the Riemann Hypothesis

Consider the following logical argument:

. Elephants never forget.

. No creature that has ever won Mastermind has possessed a

trunk.

. A creature that never forgets will always win Mastermind

provided it takes part in the competition.

. A creature lacking a trunk is not an elephant.

. In 2001 an elephant took part in Mastermind.

Therefore:

. The Riemann Hypothesis is false.

Is this a correct deduction?

Answer on page 302...........................................
Murder in the Park

This puzzle – like several in this book – goes back to the great

English puzzlist Henry Ernest Dudeney. He called it ‘Ravensdene

Park’. I’ve made a few trivial changes.

Ravensdene Park.

Soon after a heavy fall of snow, Cyril Hastings entered

Ravensdene Park at gate D, walked straight to the position
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marked with a black dot, and was stabbed through the heart. His

body was found the next morning, along with several tracks in

the snow. The police immediately closed the park.

Their subsequent investigations revealed that each track had

been made by a different, very distinctive shoe. Witnesses placed

four individuals, other than Hastings, in the park during the

period concerned. So the murderer had to be one of them.

Examining their shoes, the police deduced that:

. The butler – who could prove he had been in the house X at

the time of the murder – had entered at gate E and gone to X.

. The gamekeeper – who had no such alibi – had entered at gate

A and gone to his lodge at Y.

. A local youth had entered at gate G and left by gate B.

. The grocer’s wife had entered at gate C and left by gate F.

None of these individuals entered or left the park more than

once.

It had been foggy as well as snowy, so the routes these people

took were often rather indirect. The police did notice that no two

paths crossed. But they failed to make a sketch of the routes

before the snow melted and they disappeared.

So who was the murderer?

Answer on page 303...........................................
The Cube of Cheese

An oldie, but none the worse for that. Marigold Mouse has a cube

of cheese and a carving-knife. She wishes to slice the cheese

along a flat plane, to obtain a cross-section that is a regular

hexagon. Can she do this, and if so, how?

Answer on page 304...........................................
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The Game of Life

In the 1970s John Conway invented the Game of Life. Strange

black creatures scuttle across a grid of white tiles, changing

shape, growing, collapsing, freezing and dying. The best way to

play Life (as it’s commonly known) is to download suitable

software. There are several excellent free programs for Life on the

web, easily located by searching. A Java version, which is easy to

use and will give hours of pleasure, can be found at:

www.bitstorm.org/gameoflife/

Life is played with black counters on a potentially infinite

grid of square cells. Each cell holds either one counter or none.

At each stage, or generation, the set of counters defines a

configuration. The initial configuration at generation 0 evolves at

successive stages according to a short list of rules. The rules are

illustrated in the diagrams below. The neighbours of a given cell

are the eight cells immediately adjacent to it, horizontally,

vertically or diagonally. All births and deaths occur simultan-

eously: what happens to each counter or empty cell in

generation nþ1 depends only on its neighbours in generation n.

An occupied cell and its eight neighbours.

Rule 1: If a counter
(black) has two or three
neighbours (grey), it
survives to the next
generation – that is, it
remains in the same
cell.
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Rule 2: If a counter
(black) has four or more
neighbours (grey), it dies
in the next generation –
that is, it is removed.

Rule 3: If a counter
(black) has no
neighbours, or just one
(grey), it dies in the next
generation.

Rule 4: If an empty cell
(centre) has exactly
three neighbours
(grey), it gives birth
(black) in the next
generation – that is, a
counter is placed in that
cell. The neighbours
may live or die,
depending on their
neighbours.

Starting from any given initial configuration, the rules are

applied repeatedly to produce the life history of its succeeding

generations. For example, here is the life history of a small

triangle built from four counters:
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Life history of a configuration. Configurations 8 and 9 alternate
periodically.

Even this simple examples shows that the rules for Life can

generate complex structures from simpler ones. Here the

sequence of generations becomes periodic: at generation 10 the

configuration is the same as at generation 8, and thereafter

configurations 8 and 9 alternate, a sequence known as traffic

lights.

One of the fascinations of Life is the astonishing variety of

life histories, and the absence of any obvious relation between the

initial configuration and what it turns into. The system of rules is

entirely deterministic – the entire infinite future of the system is

implicit in its initial state. But Life dramatically demonstrates the
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difference between determinism and predictability. This is where

the name ‘Life’ comes from.

From a mathematical point of view, it is natural to classify

Life configurations according to their long-term behaviour. For

example, configurations may:

(1) disappear completely (die)

(2) attain a steady state (stasis)

(3) repeat the same sequence over and over again (periodicity)

(4) repeat the same sequence over and over again but end up in a

new location

(5) behave chaotically

(6) exhibit computational behaviour (universal Turing

machine).

Among the common periodic configurations are the blinker and

traffic lights, with periods 3 and 8, respectively:

Two periodic
configurations.

The outcome of a game of Life is extraordinarily sensitive to

the precise choice of the initial state. A difference of one cell can

totally change the state’s future. Moreover, simple initial

configurations can sometimes develop into very complicated

ones. This behaviour – to some extent ‘designed in’ by the choice

of update rules – motivates the game’s name.
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The left-hand S-shaped configuration eventually settles down
after 1,405 generations, by which time it has given birth to 2
gliders, 24 blocks, 6 ponds, 4 loaves, 18 beehives and 8 blinkers.
If you delete just one cell to give the right-hand configuration,
everything dies completely after 61 generations.

The prototype mobile state is the glider, which moves one cell

diagonally every four moves:

Motion of a glider.

Three spaceships (lightweight, middleweight, heavyweight)

repeat cycles that cause them to move horizontally, throwing off

sparks that vanish immediately. Longer spaceships do not work

on their own – they break apart in complicated ways – but they

can be supported by flotillas of accompanying smaller spaceships.

Spaceships.

One of the earliest mathematical questions about Life was

whether there can exist a finite initial configuration whose future

configurations are unbounded – that is, it will become as large as

we wish if we allow enough time to pass. This question was

answered in the affirmative by Bill Gosper’s invention of a glider

gun. The configuration shown below in black oscillates with
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period 30, and repeatedly fires gliders (the first two are shown in

grey). The stream of gliders grows unboundedly.

The glider gun, with two gliders it has spat out.

It turns out that the Game of Life has configurations which

act like computers, able in principle to calculate anything that a

computer program can specify. For example, such a configura-

tion can compute p to as many decimal places as we want. In

practice, such computations run incredibly slowly, so don’t

throw away your PC just yet.

In fact, even simpler ‘games’ of the same kind – known as

cellular automata (page 239) – living on a line of squares instead

of a two-dimensional array, can behave as universal computers.

This automaton, known as ‘rule 110’, was suggested by Stephen

Wolfram in the 1980s, and Matthew Cook proved its universality

in the 1990s. It illustrates, in a very dramatic way, how

astonishingly complex behaviour can be generated by very

simple rules. See mathworld.wolfram.com/Rule110.html...........................................
Two-Horse Race

Every whole number can be obtained by multiplying suitable

primes together. If this requires an even number of primes, we

say that the number is of even type. If it requires an odd number

of primes, we say that the number is of odd type. For instance,

96 ¼ 26262626263
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uses six primes, so is of even type. On the other hand,

105 ¼ 36567

uses three primes, so is of odd type. By convention, 1 is of even

type.

For the first ten whole numbers, 1–10, the types are:

Odd 2 3 5 7 8
Even 1 4 6 9 10

A striking fact emerges: in general, odd types occur at least as

frequently as even types. Imagine two horses, Odd and Even,

racing. Start them level with each other, and read along the

sequence of numbers: 1; 2; 3; . . . At each stage, move Odd forward

one step if the next number has odd type; move Even forward

one step if the next number has even type. So:

After 1 step, Even is ahead.

After 2 steps, Odd and Even are level.

After 3 steps, Odd is ahead.

After 4 steps, Odd and Even are level.

After 5 steps, Odd is ahead.

After 6 steps, Odd and Even are level.

After 7 steps, Odd is ahead.

After 8 steps, Odd is ahead.

After 9 steps, Odd is ahead.

After 10 steps, Odd and Even are level.

Odd always seems to be level, or ahead. In 1919 George Pólya

conjectured that Odd never falls behind Even, except right at the

start, step 1. Calculations showed that this is true for the first

million steps. Given this weight of favourable evidence, surely it

has to be true for any number of steps?

Without a computer you can waste a lot of time on this

question, so I’ll tell you the answer. Pólya was wrong! In 1958,

Brian Haselgrove proved that at some (unknown) stage Odd falls

behind Even. Once reasonably fast computers were available, it

was easy to test ever larger numbers. In 1960 Robert Lehman

discovered that Even is in the lead at step 906,180,359. In 1980
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Minoru Tanaka proved that Even first takes the lead at step

906,150,257.

This kind of thing is what makes mathematicians insist upon

proofs. And it shows that even a number like 906,150,257 can be

interesting and unusual............................................
Drawing an Ellipse – and More?

It is well known that an easy way to draw an ellipse is to fix two

pins through the paper, tie a loop of string round them, and

place your pencil so that the string stays taut. Gardeners

sometimes use this method to map out elliptical flowerbeds. The

two pins are the foci (plural of focus, and pronounced ‘foe-sigh’)

of the ellipse.

How to draw an ellipse.

Suppose that you use three pegs, in a triangle. It need not be

an equilateral or isosceles triangle.

Why isn’t this interesting too?
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That ought to give some interesting new kinds of curves. So

why don’t the mathematics books mention them?

Answer on page 304...........................................
Mathematical Jokes 3

Two mathematicians in a cocktail bar are arguing about how

much maths the ordinary person knows. One thinks they’re

hopelessly ignorant; the other says that quite a few people

actually know a lot about the subject.

‘Bet you twenty pounds I’m right,’ says the first, as he heads

for the gents. While he is gone, his colleague calls the waitress

over.

‘Listen, there’s ten pounds in it for you if you come over

when my friend gets back and answer a question. The answer is

‘‘one-third x cubed.’’ Got that?’

‘Ten pounds for saying ‘‘One thirdex cue?’’ ’

‘No, one-third x cubed.’

‘One thir dex cubed?’

‘Yeah, that’ll do.’

The other mathematician comes back, and the waitress

comes over.

‘Hey – what’s the integral of x squared?’

‘One third x cubed,’ says the waitress. As she walks away, she

adds, over her shoulder, ‘Plus a constant.’...........................................
The Kepler Problem

Mathematicians have learned that apparently simple questions

are often hard to answer, and apparently obvious facts may be

false, or may be true but extremely hard to prove. The Kepler

problem is a case in point: it took nearly three hundred years to
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solve it, even though everyone knew the correct answer from the

start.

It all began in 1611 when Johannes Kepler, a mathematician

and astrologer (yes, he cast horoscopes; lots of mathematicians

did at that time – it was a quick way to make money) wanted to

give his sponsor a New Year’s gift. The sponsor rejoiced in the

name Johannes Mathäus Wacker of Wackenfels, and Kepler

wanted to say ‘thanks for all the cash’ without actually spending

any of it. So he wrote a book, and presented it to his sponsor. Its

title (in Latin) was The Six-Cornered Snowflake. Kepler started with

the curious shapes of snowflakes, which often form beautiful

sixfold symmetric crystals, and asked why this happened.

A typical ‘dendritic’
snowflake.

It is often said that ‘no two snowflakes are alike’. The logician

in me objects ‘How can you tell?’ but a back-of-the-envelope

calculation suggests that there are so many features in a

‘dendritic’ snowflake, of the kind illustrated, that the chance of

two being identical is pretty much zero.

No matter. What matters here is that Kepler’s analysis of the

snowflake led him to the idea that its sixfold symmetry arises

because that’s the most efficient way to pack circles in a plane.

Take a lot of coins, of the same denomination – pennies, say.

If you lay them on a table and push them together tightly, you
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quickly discover that they fit perfectly into a honeycomb

pattern, or ‘hexagonal lattice’:

(Left) The closest way to
pack circles, and (right)
a less efficient lattice
packing.

And this is the closest packing – the one that fills space most

efficiently, in the ideal case of infinitely many circles arranged on

a plane. Alternatives, such as the square lattice on the right, are

less efficient.

Mind you, this innocent assertion wasn’t proved until 1940,

when László Fejes Tóth managed it. (Axel Thue sketched out a

proof in 1892, and gave more details in 1910, but he left some

gaps.) Tóth’s proof was quite hard. Why the difficulty? We don’t

know, to begin with, that the most efficient packing forms a

regular lattice. Maybe something more random could work

better. (For finite packings, say inside a square, this can actually

happen – see the next puzzle, about a milk crate.)

Along the way, Kepler came very close indeed to the idea that

all matter is made from tiny indivisible components, which we

now call ‘atoms’. This is impressive, given that he did no

experiments in the course of writing his book. Atomic theory,

introduced by the Greek Democritus, was not established

experimentally until about 1900.

Kepler had his eye on something a bit more complicated,

though: the closest way to pack identical spheres in space. He

was aware of three regular ‘lattice’ packings, which we now call

the hexagonal, cubic and face-centred cubic lattices. The first of

these is formed by stacking lots of honeycomb layers of spheres

on top of one another, with the centres of corresponding spheres

forming a vertical line. The second is made from square-lattice

layers, also stacked vertically. For the third, we stack hexagonal

layers, but fit the spheres in any given layer into the hollows in

the one below.
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You can get the same result, though tilted, by similarly

stacking square-lattice layers so that the spheres in any given

layer fit into the hollows in the one below – this isn’t entirely

obvious, and – like the milk crate puzzle – it shows that intuition

may not be a good guide in this area. The picture shows how this

happens: the horizontal layers are square, but the slanting layers

are hexagonal.

Part of a face-centred
cubic lattice.

Now, every greengrocer knows that the way to stack oranges

is to use the face-centred cubic lattice.* By thinking about

pomegranate seeds, Kepler was led to the casual remark that with

the face-centred cubic lattice, ‘the packing will be the tightest

possible’.

That was in 1611. The proof that Kepler was right had to wait

until 1998, when Thomas Hales announced that he had achieved

this with massive computer assistance. Basically, Hales consid-

ered all possible ways to surround a sphere with other spheres,

and showed that if the arrangement wasn’t the one found in the

face-centred cubic lattice, then the spheres could be shoved

closer together. Tóth’s proof in the plane used the same ideas,

but he only had to check about forty cases.

Hales had to check thousands, so he rephrased the problem

in terms that could be verified by a computer. This led to a huge

computation – but each step in it is essentially trivial. Almost all

of the proof has been checked independently, but a very tiny

level of doubt still remains. So Hales has started a new computer-

* They don’t say it that way, but they stack it that way.
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based project to devise a proof that can be verified by standard

proof-checking software. Even then, a computer will be involved

in the verifications, but the software concerned does such simple

things – in principle – that a human can check that the software

does what it is supposed to. The project will probably take 20

years. You can still object on philosophical grounds if you wish,

but you’ll be splitting logical hairs very finely indeed.

What makes the problem so hard? Greengrocers usually start

with a square box that has a flat base, so they naturally pack their

oranges in layers, making each layer a square lattice. It is then

natural to make the second layer fill the gaps in the bottom one,

and so on. If by chance they start with a hexagonal layer instead,

they get the same packing anyway, except for a tilt. Gauss proved

in 1831 that Kepler’s packing is the tightest lattice packing. But

the mathematical problem here is to prove this, without

assuming at the start that the packing forms flat layers. The

mathematician’s spheres can hover unsupported in space. So the

greengrocer’s ‘solution’ involves a whole pile of assumptions –

well, actually, oranges. Since experiments aren’t proofs, and here

even the experiment is dodgy, you can see that the problem

could be harder than it seems............................................
The Milk Crate Problem

Here’s a simpler question of the same kind. A milkman wishes to

pack identical bottles, with circular cross-section, into a square

crate. To him, it’s obvious that for any given square number of

bottles – 1, 4, 9, 16, and so on – the crate can be made as small as

possible by packing the bottles in a regular square array. (He can

see that with a non-square number of bottles, there are gaps and

maybe the bottles can be jiggled around to shrink the crate.)

Is he right?
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How the milkman fits
16 bottles into the
smallest possible
square crate.

Answer on page 305...........................................
Equal Rights

One of the leading female mathematicians of the early twentieth

century was Emmy Noether, who studied at the University of

Göttingen. But after she completed her doctorate the authorities

refused to allow her to proceed to the status of Privatdozent,

which would allow her to charge students fees for tuition. Their

stated reason was that women were not permitted to attend

faculty meetings at the university senate. The head of the

mathematics department, the great David Hilbert, is said to have

remarked: ‘Gentlemen! There is nothing wrong with having a

woman in the senate. Senate is not a public bath.’...........................................
Road Network

Four towns – Aylesbury, Beelsbury, Ceilsbury and Dealsbury – lie

at the corners of a square, of side 100 km. The highways

department wishes to connect them all together using the

shortest possible network of roads.
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Not like this.

‘We can run roads straight from Aylesbury to Beelsbury to

Ceilsbury to Dealsbury,’ said the assistant town planner. ‘That’s

300 km of roads.’

‘No, we can do better than that!’ his boss replied. ‘Two

diagonals, which, if you recall your Pythagoras, amount to

200 2
p

km – about 282 km.’

What is the shortest network? Using the diagonals of the square

is not the answer.

Answer on page 305...........................................
Tautoverbs

In Terry Pratchett’s Discworld series of fantasy novels, the

members of the Order of Wen the Eternally Surprised, better

known as the History Monks, are greatly impressed by the

homespun wisdom of Mrs Marietta Cosmopilite. They have

never before heard her homely homilies (such as ‘I haven’t got

all day, you know’), so to those monks who follow the Way of

Mrs Cosmopilite, her simple assertions are marvellous new

philosophical insights.

Mathematicians take a more jaundiced view of folk wisdom,

and habitually revise proverbs to make them more logical.

Indeed tautological – trivially true. Thus the proverb ‘Penny wise,

pound foolish’ becomes the tautoverb ‘Penny wise, wise about
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pennies,’ which makes more sense and is difficult to dispute. And

‘Look after the pennies and the pounds will look after

themselves’ is more convincing in the form ‘Look after the

pennies and the pennies will be looked after.’

As a kid I was always vaguely bothered that in their original

form these two proverbs contradict each other, though I now see

this as the default mechanism whereby folk wisdom ensures that

it is perceived to be wise. The revised versions do not conflict –

clear evidence of their superiority. I’ll give you a couple of other

examples to get you started, and then turn you lose on the

opening words of several proverbs. Your job is to complete them

to make tautoverbs. The first example is simple and direct, the

other more baroque. Both forms are permissible. So is helpful

commentary, preferably blindingly obvious. Logical quibbles are

actively encouraged – the more pedantic, the better.

. He who fights and runs away will live to run away again.

. A bird in the bush is worth two in the hand, because free-

range produce is always expensive.

OK, now it’s your turn. In the same spirit, complete the

following tautoverbs:

. No news is—

. The bigger they are—

. Nothing ventured—

. Too many cooks—

. You cannot have your cake—

. A watched pot—

. If pigs had wings—

If you have enjoyed this game, psychiatric help is recommended,

but until it arrives you can find a lot more proverbs to work on at

www.manythings.org/proverbs/index.html

Answers on page 306...........................................
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Complexity Science

Complexity science, or the theory of complex systems, came to

prominence with the founding of the Santa Fe Institute (SFI) in

1984, by George Cowan and Murray Gell-Mann. This was, and

still is, a private research centre for interdisciplinary science, with

emphasis on ‘the sciences of complexity’. You might think that

‘complexity’ refers to anything complicated, but the SFI’s main

objective has been to develop and disseminate new mathema-

tical techniques that could shed light on systems in which very

large numbers of agents or entities interact with one another

according to relatively simple rules. A key phenomenon is what

is called emergence, in which the system as a whole behaves in

ways that are not available to the individual entities.

An example of a real-world complex system is the human

brain. Here the entities are nerve cells – neurons – and the

emergent features include intelligence and consciousness.

Neurons are neither intelligent nor conscious, but when enough

of them are hooked together, these abilities emerge. Another

example is the world’s financial system. Now the entities are

bankers and traders, and emergent features include stock-market

booms and crashes. Other examples are ants’ nests, ecosystems

and evolution. You can probably work out what the entities are

for each of these, and think of some emergent features. Anyone

can play this game.

What’s harder, and what SFI was, and still is, all about, is to

model such systems mathematically in a way that reflects their

underlying structure as an interacting system of simple compo-

nents. One such modelling technique is to employ a cellular

automaton – a more general version of John Conway’s Game of

Life. This is like a computer game played on a square grid. At any

given instant, each square exists in some state, usually repre-

sented by what colour it is. As time ticks to the next instant, each

square changes colour according to some list of rules. The rules

involve the colours of neighbouring squares, and might be
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something like this: ‘a red square changes to green if it has

between two and six blue neighbours’. Or whatever.

Three types of
pattern formed by a
simple cellular
automaton: static
(blocks of the same
colour), structured
(the spirals), and
chaotic (for example
the irregular patch at
bottom right).

It might seem unlikely that such a rudimentary gadget can

achieve anything interesting, let alone solve deep problems of

complexity science, but it turns out that cellular automata can

behave in rich and unexpected ways. In fact their earliest use, by

John von Neumann in the 1940s, was to prove the existence of

an abstract mathematical system that could self-replicate – make

copies of itself.* This suggested that the ability of living creatures

to reproduce is a logical consequence of their physical structure,

rather than some miraculous or supernatural process.

Evolution, in Darwin’s sense, offers a typical example of the

complexity-theory approach. The traditional mathematical

model of evolution is known as population genetics, which goes

* There is now a lot of interest in doing the same with real
machines, using nanotechnology. There are many science fiction
stories about ‘Von Neumann machines’, often employed by aliens
or machine cultures to invade planets, including our own. The
techniques used to pack millions of electronic components on to
a tiny silicon chip are now being used to build extremely tiny
machines, ‘nanobots’, and a true replicating machine may not be
so far away. Alien invasions are not a current cause for concern,
but the possibility of a mutant Von Neumann machine turning
the Earth into ‘grey goo’ has raised issues about the safety, and
control, of nanotechnology. See en.wikipedia.org/wiki/Grey_goo
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back to the British statistician Sir Ronald Fisher, around 1930.

This approach views an ecosystem – a rainforest full of different

plants and insects, or a coral reef—as a vast pool of genes. As the

organisms reproduce, their genes are mixed together in new

combinations.

For example, a hypothetical population of slugs might have

genes for green or red skins, and other genes for a tendency to

live in bushes or on bright red flowers. Typical gene combina-

tions are green–bush, green–flower, red–bush, and red–flower.

Some combinations have greater survival value than others. For

example red–bush slugs would easily be seen by birds against the

green bushes they live in, whereas red–flower slugs would be less

visible.

As natural selection weeds out unfit combinations, the

combinations that allow organisms to survive better tend to

proliferate. Random genetic mutations keep the gene pool

simmering. The mathematics centres on the proportions of

particular genes in the population, and works out how those

proportions change in response to selection.

A complexity model of slug evolution would be very

different. For instance, we could set up a cellular automaton,

assigning various environmental characteristics to each cell. For

example, a cell might correspond to a piece of bush, or a flower,

or whatever. Then we choose a random selection of cells and

populate them with ‘virtual slugs’, assigning a combination of

slug genes to each such cell.

Other cells could be ‘virtual predators’. Then we specify rules

for how the virtual organisms move about the grid and interact

with one another. For example, at each time-step a slug must

either stay put or move to a random neighbouring cell. On the

other hand, a predator might ‘see’ the nearest slug and move five

cells towards it, ‘eating’ it if it reaches the slug’s own cell – so that

particular virtual slug is removed from the computer’s memory.

We would set up the rules so that green slugs are less likely to

be ‘seen’ if they are on bushes rather than flowers. Then this

mathematical computer game would be allowed to run for a few
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million time-steps, and we would read off the proportions of

various surviving slug gene combinations.

Complexity theorists have invented innumerable models in

the same spirit: building in simple rules for interactions between

many individuals, and then simulating them on a computer to

see what happens. The term ‘artificial life’ has been coined to

describe such activities. A celebrated example is Tierra, invented

by Tom Ray around 1990. Here, short segments of computer

code compete with one another inside the computer’s memory,

reproducing and mutating (see www.nis.atr.jp/~ray/tierra/). His

simulations show spontaneous increases in complexity, rudi-

mentary forms of symbiosis and parasitism, lengthy periods of

stasis punctuated by rapid changes – even a kind of sexual

reproduction. So the message from the simulations is that all

these puzzling phenomena are entirely natural, provided they

are seen as emergent properties of simple mathematical rules.

The same difference in working philosophy can be seen in

economics. Conventional mathematical economics is based on a

model in which every player has complete and instant

information. As the Stanford economist Brian Arthur puts it, the

assumption is that ‘If two businessmen sit down to negotiate a

deal, in theory each can instantly foresee all contingencies, work

out all possible ramifications, and effortlessly choose the best

strategy.’ The goal is to demonstrate mathematically that any

economic system will rapidly home in on an equilibrium state,

and remain there. In equilibrium, every player is assured of the

best possible financial return for themselves, subject to the

overall constraints of the system. The theory puts formal flesh on

the verbal bones of Adam Smith’s ‘invisible hand of the market’.

Complexity theory challenges this cosy capitalist utopia in a

number of ways. One central tenet of classical economic theory is

the ‘law of diminishing returns’, which originated with the

English economist David Ricardo around 1820. This law asserts

that any economic activity that undergoes growth must even-

tually be limited by constraints. For example, the plastics industry

depends upon a supply of oil as raw material. When oil is cheap,
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many companies can move over from, say, metal components to

plastic ones. But this creates increasing demand for oil, so the

price goes up. At some level, everything balances out.

Modern hi-tech industries, however, do not follow this

pattern at all. It costs perhaps a billion dollars to set up a factory

to make the latest generation of computer memory chips, and

until the factory begins production, the returns are zero. But

once the factory is in operation, the cost of producing chips is

tiny. The longer the production run, the cheaper chips are to

make. So here we see a law of increasing returns: the more goods

you make, the less it costs you to do so.

From the point of view of complex systems, the market is not

a simple mathematical equilibrium-seeker, but a ‘complex

adaptive system’, where interacting agents modify the rules that

govern their own behaviour. Complex adaptive systems often

settle into interesting patterns, strangely reminiscent of the

complexities of the real world. For example, Brian Arthur and his

colleagues have set up computer models of the stock market in

which the agents search for patterns – genuine or illusory – in the

market’s behaviour, and adapt their buying and selling rules

according to what they perceive. This model shares many

features of real stock markets. For example, if many agents

‘believe’ that the price of a stock will rise, they buy it, and the

belief becomes self-fulfilling.

According to conventional economic theory, none of these

phenomena should occur. So why do they happen in complexity

models? The answer is that the classical models have inbuilt

mathematical limitations, which preclude most kinds of ‘inter-

esting’ dynamics. The greatest strength of complexity theory is

that it resembles the untidy creativity of the real world.

Paradoxically, it makes a virtue of simplicity, and draws far-

ranging conclusions from models with simple – but carefully

chosen – ingredients............................................
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Scrabble Oddity

The letter scores at Scrabble are:

Score 1 A, E, I, L, N, O, R, S, T, U

Score 2 D, G

Score 3 B, C, M, P

Score 4 F, H, V, W, Y

Score 5 K

Score 8 J, X

Score 10 Q, Z

Which positive integer is equal to its own Scrabble score when

spelt out in full?

Answer on page 306...........................................
Dragon Curve

The picture shows a sequence of curves, called dragon curves

(look at the last one). The sequence can be continued

indefinitely, getting ever more complicated curves.

What is the rule for making them? Ignore the ‘rounding’ of the

corners by the short lines, which is done so that later curves in

the sequence remain intelligible.

The first
nine
dragon curves.

Answer on page 307...........................................
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Counterflip
Make some circular counters out of card, each black on one side

and white on the other (the precise number doesn’t matter, but

10 or 12 is about right). Arrange them in a row, with a random

choice of colours facing upwards.

Your task is now to remove all the counters, by making a

series of moves. Each move involves choosing a black counter,

removing it, and flipping any neighbouring counters over to

change their colours. Counters are ‘neighbours’ if they are next

to each other in the original row of counters; removing any

counter creates a gap. As the game progresses, a counter may

have two, one or no neighbours.

Here is a sample game in which the player succeeds in

removing all the counters:

Sample game
of counterflip.
Lines show
neighbours.

The key to this puzzle is simple, but far from obvious: with

correct play, you can always succeed if the initial number of

black counters is odd. If it is even, there is no solution.

You can play the game for fun, without analysing its

mathematical structure. If you feel ambitious, you can look for a

winning strategy – and explain why there is no way to win when

the initial number of black counters is even.

Answer on page 307...........................................
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Spherical Sliced Bread

Araminta Ponsonby took her two sets of quins to the Archimedes

bakery, which makes spherical loaves. She likes to go there

because each loaf is cut into ten slices, of equal thickness, so each

child can have one slice of bread. They have different appetites –

which is fortunate because some slices have smaller volume than

others. But, being extremely well-behaved, all ten children love

the crust, and want as much as they can get.

Which slice has the most crust?

The slices are the same
thickness: which has the
most crust?

Assume that the loaf is a perfect sphere, the slices are formed

by parallel equally spaced planes, and the crust is infinitely thin –

so the amount of crust on each slice is equal to the area of the

corresponding part of the sphere’s surface.

Answer on page 309...........................................
Mathematical Theology

It is said that during Leonhard Euler’s second stint at the Court of

Catherine the Great, the French philosopher Denis Diderot was

trying to convert the Court to atheism. Since royalty generally

claims to have been appointed by God, this didn’t go down

terribly well. At any rate, Catherine asked Euler to put a spoke in

Diderot’s wheel. So Euler told the Court that he knew an algebraic

proof of the existence of God. Facing Diderot, he declaimed: ‘Sir,
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aþ bn=n ¼ x, hence God exists – reply!’ Diderot had no answer,

and left the Court to widespread laughter, humiliated.

Yes, well . . . There are some little problems with this

anecdote, which seems to have originated with the English

mathematician Augustus De Morgan in his Budget of Paradoxes.

As the historian Dirk Struik pointed out in 1967, Diderot was an

accomplished mathematician who had published work on

geometry and probability, and would have been able to recognise

nonsense when he heard it. Euler, an even better mathematician,

would not have expected something that simple-minded to

work. The formula is a meaningless equation unless we know

what a, b, n and x are supposed to be. As Struik remarks, ‘No

reason exists to think that the thoughtful Euler would have

behaved in the asinine way indicated.’

Euler was a religious man, who apparently considered the

Bible to be literal truth, but he also believed that knowledge

stems, in part, from rational laws. In the eighteenth century

there was occasional talk about the possibility of an algebraic

proof of the Deity’s existence, and Voltaire mentions one by

Maupertuis in his Diatribe.

A much better attempt was found among Kurt Gödel’s

unpublished papers. Naturally, it is formulated in terms of

mathematical logic, and for the record here it is in its entirety:

Ax:1 &Vx½fðxÞ ! cðxÞ�6PðfÞ ! PðcÞ
Ax:2 Pð:fÞp:PðfÞ
Th:1 PðfÞ ! }9x½fðxÞ�
Df:1 GðxÞ , Vf½PðfÞ ! fðxÞ�
Ax:3 PðGÞ
Th:2 }9xGðxÞ
Df:2 f essx , fðxÞ6VCCðxÞ ! &Vx½fðxÞ ! CðxÞ�
Ax:4 PðfÞ ! &PðfÞ
Th:3 GðxÞ ! G essx
Df:3 EðxÞ , Vf½f essx ! &9xfðxÞ
Ax:5 PðEÞ
Th:4 &9xGðxÞ

The symbolism belongs to a branch of mathematical logic called

modal logic. Roughly speaking, the proof works with ‘positive
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properties’, denoted by P. The expression PðfÞ means that f is a

positive property. The property ‘being God’ is defined (Df.1) by

requiring God to have all positive properties. Here G(x) means

‘x has the property of being God’, which is a fancy way of saying

‘x is God’. The symbols & and } denote ‘necessary truth,’ and

‘contingent truth,’ respectively. The arrow ? means ‘implies’,

V is ‘for all’ and 9 is ‘there exists’. The symbol : means ‘not’, 6 is

‘and’, and $ and , are subtly different versions of ‘if and only

if’. The symbol ‘ess’ is defined in Df.2. The axioms are Ax.1–5.

The theorems (Th.1–4) culminate in the statement ‘there exists x

such that x has the property of being God’ – that is, God exists.

The distinction between necessary and contingent truth is a

key novelty of modal logic. It distinguishes statements that must

be true (such as ‘2þ 2 ¼ 4’ in a suitable axiomatic treatment of

mathematics) from those that conceivably might be false (such

as ‘it is raining today’). In conventional mathematical logic, the

statement ‘If A then B’ is always considered to be true when A is

false. For instance ‘2þ 2 ¼ 5 implies 1 ¼ 1’ is true, and so is

‘2þ 2 ¼ 5 implies 1 ¼ 42’. This may seem strange, but it is

possible to prove that 1 = 1 starting from 2þ 2 ¼ 5, and it is also

possible to prove that 1 = 42 starting from 2þ 2 ¼ 5. So the

convention makes good sense. Can you find any such proofs?

If we extend this convention to human activities, then the

statement ‘If Hitler had won World War II then Europe would

now be a single nation’ is trivially true, because Hitler did not win

World War II. But ‘If Hitler had won World War II then pigs

would now have wings’ is also trivially true, for the same reason.

In modal logic, however, it would be sensible to debate the truth

or falsity of the first of these statements, depending on how

history might have changed if the Nazis had won the war. The

second would be false, because pigs don’t have wings.

Gödel’s sequence of statements turns out to be a formal

version of the ontological argument put forward by St Anselm of

Canterbury in his Proslogion of 1077–78. Defining ‘God’ as ‘the

greatest conceivable entity’, Anselm argued that God is con-
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ceivable. But if he is not real, we could conceive of Him being

greater by existing in reality. Therefore, God must be real.

Aside from deep issues of what we mean by ‘greatest’ and so

forth, there is a basic logical flaw here, one that every

mathematician learns at his mother’s knee. Before we can deduce

any property of some entity or concept from its definition, we

must first prove that something satisfying the definition exists.

Otherwise the definition might be self-contradictory. For

instance, suppose we define n to be ‘the largest whole number’.

Then we can easily prove that n ¼ 1. For if not, n2 > n, contra-

dicting the definition of n. Therefore 1 is the largest whole

number. The flaw is that we cannot use any properties of n until

we know that n exists. As it happens, it doesn’t – but even if it

did, we would have to prove that it did before proceeding with

the deduction.

In short: in order to prove that God exists by Anselm’s line of

thinking, we must first establish that God exists (by some other

line of reasoning, or else the logic is circular). Of course I’ve

simplified things here, and later philosophers tried to remove the

flaw by being more careful with the logic or the philosophy.

Gödel’s proof is essentially a formal version of one proposed by

Leibniz. Gödel never published his proof because he was worried

that it might be seen as a rigorous demonstration of the existence

of God, whereas he viewed it as a formal statement of Leibniz’s

tacit assumptions, which would help to reveal potential logical

errors. For further analysis see

en.wikipedia.org/wiki/G%C3%B6del’s_ontological_proof and for a

detailed discussion of modal logic and its use in the proof see

www.stats.uwaterloo.ca/~cgsmall/ontology1.html

Answers on page 310...........................................
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Professor Stewart’s Cunning
Crib Sheet
...........................................

Wherein the discerning or desperate reader may

locate answers to those questions that are

currently known to possess them . . . with

occasional supplementary facts for

their further edification.



Alien Encounter

Alfy is a Veracitor, whereas Betty and Gemma are Gibberish.

There are only eight possibilities, so you can try each in turn. But

there’s a quicker way. Betty said that Alfy and Gemma belong to the

same species, but they have given different answers to the same

question, so Betty is Gibberish. Alfy said precisely that, making him a

Veracitor. Gemma said the opposite, so she must be Gibberish.

Curious Calculations

161 ¼ 1

11611 ¼ 121

1116111 ¼ 12;321

1;11161;111 ¼ 1;234;321

11;111611;111 ¼ 123;454;321

If you know how to do ‘long multiplication’, you can see why this

striking pattern occurs. For instance,

1116111 ¼
11;100 þ
1;110 þ
111

We find one ‘1’ in the units column, two in the tens column, three in

the hundreds; then the numbers shrink again, with two in the

thousands and one in the ten thousands. So the answer must be

12,321.

The pattern does continue – but your calculator may run out of

digits. In fact,

111; 1116111;111 ¼ 12;345;654;321

1;111;11161;111;111 ¼ 1;234;567;654;321

11;111;111611;111;111 ¼ 123;456;787;654;321

111;111;1116111;111;111 ¼ 12        ,     345           678                987        654          321

After this the pattern breaks down, because digits ‘carry’ and spoil it.
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142;85762 ¼ 285;714

142;85763 ¼ 428;571

142;85764 ¼ 571;428

142;85765 ¼ 714;285

142;85766 ¼ 857;142

142;85767 ¼ 999;999

When we multiply 142,857 by 2, 3, 4, 5 or 6, we get the same

sequence of digits in cyclic order, but starting at a different place. The

999,999 is a bonus.

This curious fact is not an accident. Basically, it happens because

1/7 in decimals is 0.142857142857 . . . , repeating for ever.

Triangle of Cards

The 15-card
difference triangle.

Turnip for the Books

Hogswill started with 400 turnips.

The way to solve this kind of puzzle is to work backwards.

Suppose that at the start of hour 4, Hogswill has x turnips. By the end

of the hour he has sold
6x

7
þ 1

7
turnips, and since none are left, this

equals x. So x� 6x

7
þ 1

7
¼ x� 1

7
¼ 0, and x = 1. Similarly, if he had x

turnips at the start of hour 3, then
x� 1

7
¼ 1, so x = 8. If he had x

turnips at the start of hour 2, then
x� 1

7
¼ 8, so x = 57. Finally, if he

had x turnips at the start of hour 1, then
x� 1

7
¼ 57, so x = 400.
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The Four-Colour Theorem

Here are the four counties for which each is adjacent to all of the

others. The middle one is West Midlands – which coincidentally is

where I live – and the three surrounding it are Staffordshire,

Warwickshire and Worcestershire, clockwise from the top.

These counties imply that we
need at least four colours.

Shaggy Dog Story

First, the dodgy arithmetic. The method ‘works’ because the will’s

terms are inconsistent. The fractions do not add up to 1. In fact,

1

2
þ 1

3
þ 1

9
¼ 17

18

which should make the trick obvious.

Whoever first designed this puzzle was clever – there are very few

numbers that work, and this choice disguises the inconsistency very

neatly. I mean, how would you feel about a puzzle where the uncle

has 1,129 dogs, the sons are bequeathed 4
7,

3
11 and

2
15 of them, and

Lunchalot rides to the rescue with 26 extra dogs?

However, there is another neat possibility: exactly the same,

except that the third son gets one-seventh of the dogs. If the same

trick works, how many dogs were there?
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Answer to the Answer
The clue is that

1

2
þ 1

3
þ 1

7
¼ 41

42

So there were 41 dogs.

Answer Continued
Oops, I nearly forgot the actual question: what did Gingerbere say to

Ethelfred that so offended Sir Lunchalot?

It was this: ‘Surely you wouldn’t send a knight out on a dog like

this?’

I said it was a shaggy dog story.

Confession
The shaggy dog story is inspired, in part, by the science fiction short

story ‘Fall of knight’ by A. Bertram Chandler, which appeared in

Fantastic Universe magazine in 1958.

Rabbits in the Hat

Nothing is wrong with the calculation, but its interpretation is

nonsense. When the various probabilities are combined, we are

working out the probability of extracting a black rabbit, over all

possible combinations of rabbits. It is fallacious to imagine that this

probability is valid for any specific combination. The fallacy is glaring

if there is only one rabbit in the hat. With one rabbit, a similar

argument (ignoring adding and removing a black rabbit, which

changes nothing essential) goes like this: the hat contains either B or

W, each with probability 1
2. The probability of extracting a black

rabbit is therefore

1

2
61þ 1

2
60

which is 1
2. Therefore (really?) half the rabbits in the hat are black, and

half are white.

But there’s only one rabbit in the hat . . .
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River Crossing 1 – Farm Produce

There are two solutions. One is:

(1) Take the goat across.

(2) Come back with no cargo, pick up the wolf, and take that

across.

(3) Bring the goat back, but leave the wolf.

(4) Drop off the goat, pick up the cabbage, cross the river, leave

the cabbage.

(5) Come back with no cargo, pick up the goat, take it across.

In the other, the roles of wolf and cabbage are exchanged.

I like to solve this geometrically, using a picture in wolf–goat–

cabbage space. This consists of triples (w, g, c) where each symbol is

either 0 (on this side of the river) or 1 (on the far side). So, for

instance, (1, 0, 1) means that the wolf and cabbage are on the far side

but the goat is on this side. The problem is to get from (0, 0, 0) to

(1, 1, 1) without anything being eaten. We don’t need to say where

the farmer is, since he always travels in the boat during river

crossings.

Wolf–goat–cabbage
space: now it’s obvious.

There are eight possible triples, and they can be thought of as the

vertices of a cube. Because only one item can accompany the farmer

on each trip, the permissible moves are the edges of the cube.
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However, four edges (shown in grey) are not permitted, because

things get eaten. The remaining edges (black) do not cause mayhem.

So the puzzle reduces to a geometric one: find a route along the

black edges, from (0, 0, 0) to (1, 1, 1). The two solutions are

immediately evident.

More Curious Calculations

(1) 1361167 ¼ 1;001, and this is why the trick works. If you

multiply a three-digit number abc by 1,001 the result is abcabc.

Why? Well, multiplying by 1,000 gives abc000. Then you add a

final abc to multiply by 1,001.

(2) For four-digit numbers, everything is similar, but we have to

multiply by 10,001. This can be done in two stages – multiply by

73 and then by 137 – because 736137 ¼ 10;001.

(3) For five-digit numbers we have to multiply by 100,001. This

can be done in two stages – multiply by 11 and then by 9,091 –

because 1169;091 ¼ 100;001. As a party trick, this is a bit

contrived, though.

(4) We get 471,471,471,471 – the same three digits repeated four

times. Why? Because

7611613610169;901 ¼ 1;001;001;001

(5) Adding the final 128 leads to 128,000,000 – a million times

the original number. This trick works for all three-digit numbers,

and it does so because

3636367611613637 ¼ 999;999

Add 1 and you get a million.

You can turn all these tricks into party magic tricks. For instance,

the trick that turns 471,471 into 471 could be presented like this. The

magician, with eyes blindfolded, asks a member of the audience to

write down a three-digit number (say 471) on a blackboard or a sheet

of paper. A second person then writes it down twice (471,471). A

third, armed with a calculator, divides that by 13 (getting 36,267). A

fourth divides the result by 11 (getting 3,297). While this is going on,
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the magician makes a lot of fuss about how unlikely it is that either of

these numbers divides without remainder. Then she asks what the

final result is, and instantly announces that the original number was

471.

To work this out, she mentally divides 3,297 by 7. OK, you have

to be able to do that, but if you know your seven times table it’s easy.

Extracting the Cherry

After two matches
have been moved.

Make Me a Pentagon

Tie a knot in the strip, and flatten it – carefully.

Pentagon from
knotted strip.

An interesting challenge is to prove that the result really is a

regular pentagon – in an idealised Euclidean version of the problem.

I’ll leave that for anyone who is interested.

Empty Glasses

Pick up the second glass from the left, pour its contents into the fifth

glass, and replace the second glass.

Three Quickies

(1) If you and your partner hold all the spades, your opponents
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hold none, and vice versa. So the likelihood is the same in each

case.

(2) Three. You took three, so that’s how many you have.

(3) Zero. If five are in the right envelope, so is the sixth.

Knight’s Tours

There is no closed tour on the 565 square. Imagine colouring the

squares black and white in the usual chessboard fashion. Then the

knight changes colour at each move. A closed tour must then have

equal numbers of black and white squares. But 565 ¼ 25 is odd. The

same argument rules out closed tours on all squares with odd sides.

There is no tour on the 46 4 square. The main obstacle is that

each corner square connects to only two other squares, and the

diagonally opposite corner also connects to those two squares. A little

thought proves that if a tour of all 16 squares exists, it must start at

one corner and finish in an adjacent corner. Systematic consideration

of possibilities shows that this is impossible.

However, there is a tour that visits 15 of the 16 squares (showing

that the situation regarding a complete tour is delicate):

How the knight
can visit 15 squares.

White-Tailed Cats

Suppose that there are c cats, of which w have white tails. There are c

(c�1) ordered pairs of distinct cats, and w(w�1) ordered pairs of

white-tailed cats. (You can choose the first cat of the pair in c ways,

but the second in only c�1 ways since you’ve used up one cat. Ditto

for white-tailed cats. By ‘ordered’ I mean that choosing first cat A and
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then cat B is considered to be different from B first and then A. If you

don’t like that, then both formulas have to be halved – with the same

result.)

This means that the probability of both cats having white tails is

wðw� 1Þ
cðc� 1Þ

and this must be 1
2. Therefore

cðc � 1Þ ¼ 2wðw � 1Þ
with c and w whole numbers. The smallest solution is c ¼ 4,

w ¼ 3. The next smallest turns out to be c ¼ 21, w ¼ 15. Since Ms

Smith has fewer than 20 cats, she must have four cats, of which three

have white tails.

Perpetual Calendar

Each cube must include 1 and 2 so that 11 and 22 can be represented.

If only one cube bears a 0, then at most six of the nine numbers 01–

09 can be represented, so both must bear a 0 as well. That leaves six

spare faces for the seven digits 3–9, so the puzzle looks impossible . . .

until you realise that the cube bearing the number 6 can be turned

upside down to represent 9. So the white cube bears the numbers 0, 1,

2, 6 (also 9), 7 and 8, and the grey cube bears the numbers 0, 1, 2, 3, 4

and 5. (Note that I’ve shown a 5 on my grey cube, and that tells us

which cube is which.)

Deceptive Dice

There is no best dice. If Innumeratus plays, and Mathophila chooses

correctly (as she will, because she’s like that), then he will lose, in the

long run. The odds will always favour Mathophila.

How come? Mathophila has constructed her dice so that on

average, the yellow one beats the red one, the red one beats the blue

one – and the blue one beats the yellow one! At first sight this seems

impossible, so let me explain why it’s true.

Each number occurs twice on each of the dice, so the chance of

rolling any particular number is always 1
3. So I can make a table of the
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possibilities, and see who wins for which combinations of numbers

thrown. Each combination has the same probability, 1
9.

Yellow versus red

1 5 9
....................................................................................................................................................................

3 Red Yellow Yellow

4 Red Yellow Yellow

8 Red Red Yellow
....................................................................................................................................................................

Here yellow wins five times out of nine, red wins only four times.

Red versus blue

3 4 8
....................................................................................................................................................................

2 Red Red Red

6 Blue Blue Red

7 Blue Blue Red
....................................................................................................................................................................

Here red wins five times out of nine, blue wins only four times.

Blue versus yellow

2 6 7
....................................................................................................................................................................

1 Blue Blue Blue

5 Yellow Blue Blue

9 Yellow Yellow Yellow
....................................................................................................................................................................

Here blue wins five times out of nine, yellow wins only four times.

So yellow beats red 5
9 of the time, red beats blue 5

9 of the time, and

blue beats yellow 5
9 of the time.

This gives Mathophila an advantage if she chooses second, which

she has cunningly arranged. If Innumeratus chooses the red dice, she

should choose yellow. If he chooses the yellow dice, she should

choose blue. And if he chooses the blue dice, she should choose red.

It may not be a huge advantage – five chances out of nine of

winning, compared with four out of nine – but it’s still an advantage.
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In the long run, Innumeratus will lose his pocket money. If he wants

to play, then a gentlemanly ‘No, you choose’ would be a good idea.

It may seem impossible to have yellow ‘better than’ red, and red

‘better than’ blue – but not to have yellow ‘better than’ blue. What’s

happening is that the meaning of ‘better than’ depends on which

dice are being used. It’s a bit like three football teams:

. The Reds have a good goalkeeper and a good defence, but a

poor attack. They win if and only if the opposing goalie is

poor.

. The Yellows have a poor goalie, a good defence, and a good

attack. They win if and only if the opposing defence is poor.

. The Blues have a good goalie, a poor defence, and a good

attack. They win if and only if the opposing attack is poor.

Then (check this!) the Reds always beat the Yellows, the Yellows

always beat the Blues, and the Blues always beat the Reds.

Dice like this are said to be intransitive. (‘Transitive’ means that if

A beats B and B beats C then A beats C. That doesn’t happen here.)

On the practical side, the existence of intransitive dice tells us that

some ‘obvious’ assumptions about economic behaviour are actually

wrong.

An Age-Old Old-Age Problem

Scrumptius was 69. There was no year 0 between BC dates and AD

dates. (If you decided that he might be 68 if he died earlier in the day

than he was born, you get a point for ingenuity. But you lose two for

pedantry, because it is usual to increase a person’s age by one year as

soon as their birthday begins, immediately after midnight.)

Heron Suit

The deduction is incorrect. Consider a cat with blunt claws that plays

with a gorilla, does not wear a heron suit, has a tail, has no whiskers

and is unsociable. The first five statements are all true, but the sixth is

not.

I’d explain about the heron suit, but my cat has refused

permission on the grounds that it might incriminate itself.
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How to Unmake a Greek Cross

Converting a
Greek cross to a
square.

Euler’s Pentagonal Holiday

Here’s a solution to (b), which is automatically a solution to (a) as

well. There are others. But they all have to start and end at the two

vertices with valency 3, and a mirror-symmetric one must always

have the bottom edge of the pentagon in the middle of the tour.

A solution with
left-right symmetry.

Ouroborean Rings

One possible ouroborean ring for quadruplets is

1111000010100110

There are others. The topic has a long history, going back to Irving

Good in 1946. Ouroborean rings exist for all m-tuples of n digits: for

example, in this one

000111222121102202101201002

each triple of the three digits 0, 1, 2 occurs exactly once.

How many ouroborean rings are there? In 1946 Nicholas de

Bruijn proved that for m-tuples formed from the two digits 0 and 1,

this number is 22
m�1�m, which grows extremely fast. Here rings

obtained by rotating a given one are considered to be the same.
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m Number of ouroborean rings
....................................................................................................................................................................

2 1

3 2

4 16

5 2,048

6 67,108,864

7 144,115,188,075,855,872
....................................................................................................................................................................

The Ourotorus

There is a unique solution, except for various symmetry transfor-

mations – rotation, reflection and translations horizontally or

vertically. Bear in mind the ‘wrap round’ convention. So you can, for

instance, cut off the four pieces on the right and move them to the

left.

Solution to the
ourotorus puzzle.

A Constant Bore

The only reason for including this kind of question in this kind of

book is if something surprising happens, and the only surprising

thing that makes much sense is that the answer does not depend on

the radius of the sphere.

That sounds crazy – suppose the sphere were the Earth? But to

make the hole only 1 metre long, you have to remove almost the

entire planet, leaving only a very thin band round the equator, one

metre wide. So just maybe . . .

Here comes the easy bit. Assuming that the radius really does not
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matter, we can work out the answer by considering the special case

when the hole is very narrow – in fact, when its width is zero.

Special case of the
problem.

Now the volume of copper is equal to that of the entire sphere,

and the diameter of the sphere is 1 metre. So its radius is r ¼ 1
2, and its

volume is given by the famous formula

V ¼ 4

3
pr3

which equals p=6 when r ¼ 1
2.

Ah, but how do we know that the answer doesn’t depend on the

radius? That’s a bit more complicated, and it uses more geometry. (Or

you can do it by calculus, if you know how.)

Restoring the spherical caps
to help the calculation.

Put back the missing ‘spherical caps’ on the top and bottom.

Suppose that the radius of the sphere is r, and the radius of the

cylindrical hole is a. Then Pythagoras’s Theorem applied to the small

triangle at the top right tells us that

r2 ¼ a2 þ ð12Þ2
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so

a2 ¼ r2 � 1
4 :

Now we need three volume formulas:

. The volume of a sphere of radius r is 4
3pr

3.

. The volume of a cylinder of base radius a and height h is pa2h.

. The volume of a spherical cap of height k in a sphere of radius

r is 1
3pk

2ð3r� kÞ.
Don’t worry, I had to look that last one up myself.

The volume of copper required is the volume of the sphere,

minus that of the cylinder, minus that of two spherical caps, which is

4
3pr

3 � pa2h� 2
3pk

2ð3r� kÞ
since there are two spherical caps. But h ¼ 1; k ¼ r � 1

2 and a2 ¼ r2 � 1
4,

so the volume is

4
3pr

3 � p r2 � 1
4

� �� 2
3p r� 1

2

� �2
3r� 1

2

� �� �
Doing the algebra, almost everything miraculously cancels, and all

that remains is p=6.

Digital Century

123� 45� 67þ 89 ¼ 100

This solution was found by the great English puzzle-creator, Henry

Ernest Dudeney, and can be found in his book Amusements in

Mathematics. There are lots of answers if you use four or more

arithmetical symbols.
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Squaring the Square

How Morón’s tiles
make a rectangle.

How Duijvestijn’s
tiles make a square.

You can also rotate or reflect these arrangements.

Ring a-Ring a-Ringroad

The difference is 20p metres, or roughly 63 metres, for roads on the

flat. It doesn’t depend on the length of the motorway, or how wiggly

it is, provided the curvature is gradual enough for ‘10 metres distance

between lanes’ to be unambiguous.
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Data for a
circular M25.

Let’s start with an idealised version, where the M25 is a perfect

circle. If the anticlockwise lane has radius r, then the clockwise one

has radius r þ 10. Their circumferences are then 2pr and 2pðrþ 10Þ.
The difference is

2pðr þ 10Þ � 2pr ¼ 20p

which is independent of r.

A rectangular
motorway also creates
an excess
of 20.

However, the M25 is not circular. For argument’s sake, try a

rectangle. Now the outer lane consists of four straight bits, which

match the inner lane exactly, plus four quarter-circles at the corners.

These extra arcs fit together to make a single circle of radius 10.

Again, we get an excess of exactly 20p.

A non-convex polygon
gives 20p as well.

The same point holds for any ‘polygonal’ road – one composed of

straight lines, plus arcs of circles at corners. The straight-line parts
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match; the arcs add up to one complete circle of radius 10. This is true

even when the polygon is not convex, such as the M-shape shown

above.* Now the outer lane has arcs that add up to one and a quarter

circles, and the inner lane has a quarter circle of its own. But this

quarter-turn is of opposite curvature, so it cancels out the excess

quarter-turn in the outer lane. The point is that any sufficiently

smooth curve can be approximated as closely as we wish by polygons,

so the excess is 20p in all cases.

The same argument applies to runners on a curved track. In the

400 metres, runners start from ‘staggered’ positions, to make the

overall distance the same in each lane. The stagger between adjacent

lanes must be 2p times the width of a lane. This width is usually 1.22

metres, so the stagger should be 7.66 metres per lane – provided it is

applied on a straight section of the track. In practice the region where

the athletes start often includes part of a bend, so the numbers are a

bit different. The easy way to calculate them is to make sure that each

runner goes exactly

400 metres, which is what the rules actually state.

Magic Hexagon

The only solution (apart from rotations and reflections of it) is

The only non-trivial magic
hexagon.

This magic hexagon was found independently by several people

* It’s not true if the polygon crosses itself, as does the Suzuka racing
circuit in Japan. But for some reason figure-of-eight orbital
motorways don’t seem to have caught on.
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between 1887 and 1958. If we try similar patterns of hexagons with n

cells along the edge instead of 3, then the only other case where a

magic hexagon (using consecutive numbers 1, . . . , n) exists is the

trivial pattern when n ¼ 1: a single hexagon containing the number

1. Charles W. Trigg explained why in 1964, by proving that the magic

constant must be

9ðn4 � 2n3 þ 2n2 � nÞ þ 2

2ð2n� 1Þ
which is an integer only when n ¼ 1 or 3.

Pentalpha

The star shape is designed to mislead. The important aspect of the

structure is which circles are two steps away from which, because

these are where each new counter starts and finishes. By focusing on

this we can draw a much simpler diagram:

A transformed version of the
puzzle.

The rule for placing counters is now: place each new counter on

an empty circle and slide it to an adjacent empty circle. It is now

obvious how to cover nine circles. For example, place a counter on 1

and slide it to 0. Then place a counter on 2 and slide it to 1. Then

place a counter on 3 and slide it to 2. Continue in this way, placing

each new counter two empty dots away from the existing string of

counters.

Copy these moves on the original diagram to solve the puzzle.

In the second diagram, you can add new counters at either end,

so there are lots of solutions. But you can’t create more than one

connected chain of counters at any stage, because there are then at
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least two gaps where no counters exist, and each gap leads to at least

one circle that can’t be covered.

How Old Was Diophantus?

Diophantus was 84 when he died. Let x be his age. Then

x

6
þ x

12
þ x

7
þ 5þ x

2
þ 4 ¼ x

So

9

84
x ¼ 9

and x = 84.

The Sphinx is a Reptile

Four sphinxes make a
bigger sphinx.

Langford’s Cubes

Langford’s cubes
with four colours.

Magic Stars

This arrangement – possibly rotated or reflected – is the only

solution.
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Six-pointed
magic star.

Curves of Constant Width

Surprisingly, the circle isn’t the only curve of constant width. The

simplest curve of constant width that is not a circle is an equilateral

triangle with rounded edges:

(Left) Constant-
width triangle.

(Right) Twenty-
pence coin.

Each edge is an arc of a circle, with centre at the opposite vertex.

Two British coins, the 20p and 50p, are 7-sided curves of constant

width; this shape was chosen because it makes the coins suitable for

use in slot machines, but distinguishes them from other circular

coins worth different amounts – which is especially useful for the

visually impaired.

Connecting Cables

The main point is not to connect the dishwasher first, with a straight

cable. This isolates each of the other appliances from its socket, and

makes a solution impossible. If you connect the fridge and cooker

first, it’s then obvious how to hook up the dishwasher.
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How to make
the connections.

Coin Swap

One solution is to successively swap the following pairs: HK, HE, HC,

HA, IL, IF, ID, KL, GJ, JA, FK, LE, DK, EF, ED, EB, BK. There are many

others.

The Stolen Car

Fenderbender paid out £900 for the car and an extra £100 to the

clergyman as change. He counted all his outgoings but forgot to

include the corresponding income. All other transactions cancel out,

so he lost £1,000.

Compensating Errors

The numbers were 1, 2 and 3. Then 1þ 2þ 3 ¼ 6 ¼ 16263. This is

the only solution for three positive whole numbers.

With two numbers, the only possibility is 2þ 2 ¼ 4 ¼ 262. With

four numbers, the only solution is 1þ 1þ 2þ 4 ¼ 8 ¼ 16 16264.

With more numbers, there are usually lots of solutions, but in

some exceptional cases there is just one solution. If the sum of k

positive whole numbers is equal to their product, and only one set of

k numbers has that property, then k is one of the numbers 2, 3, 4, 6,

24, 114, 174 and 444, or it is at least 13, 587, 782, 064. No examples

greater than that are known, but their possible existence remains

open.

River Crossing 2 – Marital Mistrust

A graphical solution is a bit messy to draw because it involves a

6-dimensional hypercube in husband1–husband2–husband3–wife1–
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wife2–wife3 space. Fortunately there’s an alternative. Eliminating

unsuitable moves and using a bit of logic leads to a solution in 11

moves, which is the smallest possible number. Here the husbands are

A B C and the corresponding wives are

a b c.

This bank In boat Direction Far bank
....................................................................................................................................................................

A C a c B b ® —

A C a c B ¬ b

A B C a c ® b

A B C a ¬ b c

A a B C ® b c

A a B b ¬ C c

a b A B ® C c

a b c ¬ A B C

b a c ® A B C

b B ¬ A C a c

— B b ® A C a c
....................................................................................................................................................................

There are minor variations on this solution in which various couples

are interchanged.

Wherefore Art Thou Borromeo?

In the second pattern, the two lower rings are linked. In the third

pattern, all three pairs are linked. In the fourth pattern, the top ring is

linked to the left one which in turn is linked to the right one.

There are lots of four-ring versions. Here’s one:

A set of four
‘Borromean’ rings.

Analogous arrangements exist for any finite number of rings. It

has been proved that the Borromean property can’t be obtained using
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perfectly circular (and therefore flat) rings. This is a topological

phenomenon.

Percentage Play

The profit and loss do not cancel out. The bicycle he sold to Bettany

cost him £400 (he lost £100, which is 25% of £400). The one he sold

to Gemma cost him £240 (he gained £60, which is 25% of £240).

Overall, he paid £640 and received £600, so he lost £40.

New Merology

Assign the values

E F G H I L N O R S T U V W X Z
3 9 6 1 �4 0 5 �7 �6 �1 2 8 �3 7 11 10

Then

Zþ Eþ RþO ¼ 0

OþNþ E ¼ 1

TþWþO ¼ 2

TþHþ Rþ Eþ E ¼ 3

FþOþUþ R ¼ 4

Fþ Iþ Vþ E ¼ 5

Sþ Iþ X ¼ 6

Sþ Eþ Vþ EþN ¼ 7

Eþ Iþ GþHþ T ¼ 8

Nþ IþNþ E ¼ 9

Tþ EþN ¼ 10

Eþ Lþ Eþ Vþ EþN ¼ 11

TþWþ Eþ Lþ Vþ E ¼ 12

Spelling Mistakes

There are four spelling mistakes, in the words ‘there’, ‘mistakes’, ‘in’

and ‘sentence’. The fifth mistake is the claim that there are five

mistakes, when there are really only four.
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But . . . this means that if the sentence is true, it has to be false,

but if it’s false, it has to be true. Oops.

Expanding Universe

Perhaps surprisingly, the Indefensible actually does get to the edge of

the universe . . . but it takes about 10434 years to do so. By then the

universe has grown to a radius of about 10437 light years.

Let’s see why.

At each stage, when the universe expands, the fraction of the

distance that the Indefensible has already covered doesn’t change.

That suggests that if we think about the fractions, we ought to be able

to find the answer more easily.

In the first year the ship travels 1/1,000 of the distance to the

edge. In the next year it travels 1/2,000 of the distance. In the third

year it travels 1/3,000 of the distance, and so on. In the nth year it

travels 1/1,000n of the distance. So the total fraction travelled after n

years is

1

1;000
1þ 1

2
þ 1

3
þ 1

4
þ . . .þ 1

n

� �
¼ 1

1;000
Hn

which is why harmonic numbers are relevant. In particular, the

number of years required to reach the edge is whatever value of n first

makes this fraction bigger than 1 – that is, makes Hn bigger than

1,000. There is no known formula for the value of Hn in terms of n,

and it grows very slowly as n increases. However, it can be proved

that by making n large enough, Hn can be made as large as we wish –

and in particular, greater than 1. So the Indefensible does get to the

edge if n is sufficiently large.

To find out how large, we use the hint. To make Hn > 1,000 we

require lognþ g > 1;000, so that n > e1;000�g. So the number of years

required to reach the edge of the universe is very close to e999:423,

which is 10434 in round numbers. By then the universe will have

grown to nþ 1 thousand light years, which is near enough 10437 light

years.

Initially the remaining distance keeps increasing each year, but

eventually the ship starts to catch up with the expanding edge of the

universe. Its ‘share’ of the expansion grows as it gets farther out, and
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in the long run this beats the fixed expansion rate of 1,000 light years

per year of the edge of the universe. The ‘long run’ here is very long:

it takes about e999�g ¼ 10433:61 years before the remaining distance

starts to decrease – roughly the first third of the voyage.

Family Occasion

The smallest possible number of party guests is seven: two small girls

and one boy, their father and mother, and their father’s father and

mother.

Don’t Let Go!

Your body plus the rope forms a closed loop. It is a topological

theorem that a knot cannot be created in a closed loop by deforming

it continuously, so the problem can never be solved if you pick up the

rope in the obvious ‘normal’ way. Instead, you must first tie a knot in

your arms. This may sound difficult, but anyone can do it: just fold

them across your chest. Now lean forward so that the hand that is on

top of an arm can reach over the arm to pick up one end of the rope,

and pick up the other end with the other hand. Unfold your arms,

and the knot appears.

Möbius and His Band

If you cut a Möbius band along the middle, it stays in one piece – see

the second limerick. The resulting band has a 3608 twist.

If you cut a Möbius band one-third of the way across, you get two

linked bands. One is a Möbius band, the other (longer) one has a 3608

twist.

If you cut a band with a 3608 twist along the middle, you get two

linked bands with 3608 twists.

Three More Quickies

(1) Five days. (Each dog digs a hole in five days.)

(2) The parrot is deaf.

(3) The usual answer is that one hemisphere of the planet is land,

and the other is water, so the continent and the island are
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identical. But puzzles like this are easily ‘cooked’ by finding

loopholes in the conditions. For instance, maybe Nff lives on the

continent but its house is on the island, and Pff eats houses for

breakfast. Or on Nff-Pff, the land moves – after all, who knows

what happens on an alien world? Or . . .

Nff and Pff on their
home planet of Nff-Pff.

Miles of Tiles

I forgot to add an extra condition: the tiles should meet at their

corners. The corners of some might meet the edges of others. This

doesn’t change the answer, but it complicates the proof a little.

I forgot this
kind of thing.

Après-le-Ski

The cables cross at a height of 240 metres.
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More generally . . .

It’s simpler to tackle a more general problem, where the lengths

are as shown. By similar triangles,

xþ y

a
¼ y

c
and

xþ y

b
¼ x

c

Adding, we get

ðxþ yÞ 1

a
þ 1

b

� �
¼ xþ y

c

Dividing by xþy, we obtain

1

a
þ 1

b
¼ 1

c

leading to

c ¼ ab

aþ b

We notice that c does not depend on x or y, which is a good job since

the puzzle didn’t tell us those. We know that a ¼ 600, and

b ¼ 400, so

c ¼ 6006400

1000
¼ 240

Pick’s Theorem

The lattice polygon illustrated has B ¼ 21 and I ¼ 5, so its area is 14 1
2

square units.

Paradox Lost

I don’t think this one stands up to scrutiny. Both litigants are doing a

pick-and-mix – at one moment assuming that the agreement is valid,
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but at another, assuming that the court’s decision can override the

agreement. But why do you take an issue like this to court? Because

the court’s job is to resolve any claimed ambiguities in the contract,

override the contract if need be, and tell you what to do. So if the court

orders the student to pay up, then he has to, and if the court says that

he doesn’t have to pay up, then Protagoras doesn’t have a leg to stand

on.

Six Pens

12 panels
making 6 pens.

Hippopotamian Logic

Therefore oak trees grow in Africa.

Why? Suppose, on the contrary, that oak trees don’t grow in

Africa. Then squirrels hibernate in the winter, and hippos eat acorns.

Therefore I’ll eat my hat. But I won’t eat my hat, a contradiction.

Therefore (reductio ad absurdum) my assumption that oak trees don’t

grow in Africa must be false. So oak trees grow in Africa.

Pig on a Rope

Six copies simplify
the geometry.
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To simplify the problem, make six copies of the field, with six copies

of the (shaded) region accessible to the pig. Then we want the shaded

circle to have half the area of the hexagon. The area of the circle is pr2

where r is the radius. The hexagon has sides 100 metres long, so its

area is 10;00063 3
p

=2, or 15;000 3
p

. So pr2 ¼ 15;000 3
p

, and

r ¼ 15;000 3
p

p

� �s

which is about 90.9392 metres.

The Surprise Examination

I think that the Surprise Examination Paradox is a very interesting

case of something that looks like a paradox but isn’t. My reason is

that there is a logically equivalent statement, which is obviously true

– but totally uninteresting.

Suppose that every morning the students announce confidently,

‘The test will be today.’ Then eventually they will do so on the day of

the actual test, at which point they will be able to claim that the test

was not a surprise.

I don’t see any logical objection to this technique, but it’s

obviously a cheat. If you expect something to happen every day, then

of course you won’t be surprised when it does. My view – and I’ve

argued with enough mathematicians who didn’t agree with me, let

alone anybody else, so I’m aware that there’s room for differences of

opinion – is that the paradox is bogus. It is nothing more than this

obvious strategy, dressed up to look mysterious. The cheat is not

entirely obvious, because everything is intuited instead of being

acted upon, but it’s the same cheat.

Let me sharpen the conditions by requiring the students to state,

each morning before school begins, whether they think the test will

be held that day. With this condition, in order for the students to

know that it can’t be on Friday, they have to leave themselves the

option of announcing on Friday morning that ‘It will be today.’ And

the same goes for Thursday, Wednesday, Tuesday and Monday. So

they have to say ‘It will be today’ five times in all – once per day. This
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makes sense: if the students are allowed to revise their prediction

each day, then eventually they’ll be right.

If we demand even the tiniest bit more, though, their strategy

falls to bits. For example, suppose that they’re allowed only one such

announcement. If Friday arrives and they haven’t used up their

guess, then they can make the announcement then. But if they have

used up their guess, they’re in trouble. Worse, they can’t wait until

Friday to use their guess, because the test might be on Monday,

Tuesday, Wednesday or Thursday.

In fact, if they are allowed four guesses, they’re still sunk. Only if

they are permitted five guesses can they guarantee to predict the

correct day. But any fool could do that.

I’m proposing two things here. The less interesting one is that the

paradox hinges on what we mean by ‘surprise’. The more interesting

proposal is that whatever we mean by ‘surprise’, there are two

logically equivalent ways to state the students’ prediction strategy.

One – the usual presentation – seems to indicate a genuine paradox.

The other – describe the strategy in terms of actual actions, not

hypothetical ones – turns it into something correct but unsurprising,

destroying the element of paradox.

Equivalently, we can up the ante by letting the teacher add

another condition. Suppose that the students have poor memories,

so that any work they do on a given evening to prepare for the test is

forgotten by the next evening. If, as the students claim, the test is not

going to be a surprise, then they ought to be able to get away with

very little homework: just wait until the evening before the test, then

cram, pass and forget. But the teacher, in her wisdom, knows that

this won’t work. If they don’t do their homework on Sunday evening,

the test could be on Monday, and if it is, they’ll fail. Ditto Tuesday

through Friday. So despite claiming never to be surprised by the test,

the students have to do five evenings of homework.

Antigravity Cone

The uphill motion is an illusion. As the cone moves in the ‘uphill’

direction, its centre of gravity moves downwards, because the slope

widens out and the cone is supported nearer to its two ends.
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Side view: as the cone
follows the arrow,
which points up the
slope, its centre of
gravity moves down
(black line).

What Shape is a Crescent Moon?

Geometry of an
illuminated sphere.

The left curve of the crescent is a semicircle, but the other edge is not

an arc of a circle. It is a ‘semiellipse’ – an ellipse cut in half along its

longest axis. The diagram shows the rays of the Sun, which we are

assuming to be parallel. In this view the Sunmust be positioned some

distance behind the plane of the page to create the crescent. The light

and dark portions of the Moon are hemispheres, so the boundary

between them is a circle; in fact, it is where a plane at right angles to

the Sun’s rays cuts the sphere. We observe this circle at an angle. A

circle viewed at an angle is an ellipse – its hidden edge is drawn

dotted, and we see only the front half. (I’ve used grey shading to

show the dark part of the moon.)

In reality the illumination becomes very faint near the boundary

between light and dark, and the Moon is a bit bumpy. So the shape is

not as clearly defined as this discussion suggests. You can also quibble

about how the circle is projected on to the retina if you so desire.

The crescent shape formed by two circular arcs can sometimes be

seen in the sky – most dramatically during an eclipse of the Sun,

when the Moon partially overlaps the Sun’s disk. But now it is the

Sun, not the Moon, that looks like a crescent.
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Famous Mathematicians

The odd famous mathematician out is Carol Vorderman – see below.

Pierre Boulez Modernist composer and conductor. Studied

mathematics at the University of Lyon but then switched to

music.

Sergey Brin Co-founder of GoogleÔ, with Larry Page. Computer

Science and Mathematics degree from University of Maryland.

Net worth estimated at $16.6 billion in 2007, making him the

26th-richest person in the world. The Google search engine is

based on mathematical principles.

Lewis Carroll Pseudonym of Charles Lutwidge Dodgson. Author

of Alice in Wonderland. Logician.

J. M. Coetzee South African author and academic, winner of the

2003 Nobel Prize in Literature. BA in Mathematics at the

University of Cape Town in 1961. Also BA in English, Cape

Town, 1960.

Alberto Fujimori President of Peru, 1990–2000. Holds a master’s

degree in mathematics from the University of Wisconsin-

Milwaukee.

Art Garfunkel Singer. Master’s in mathematics from Columbia

University. Started on his PhD, but stopped to pursue a career in

music.

Philip Glass Modern composer, ‘minimalist’ (now ‘post-

minimalist’) in style. Accelerated college programme in

Mathematics and Philosophy, University of Chicago, at the age

of fifteen.

Teri Hatcher Actor. Played Lois Lane in The New Adventures of

Superman and also starred in Desperate Housewives. Mathematics

and engineering major at DeAnza Junior College.

Edmund Husserl Philosopher. Mathematics PhD from Vienna in

1883.
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Michael Jordan Basketball player. Started as a mathematics

student at university but changed subject after his second year.

Theodore Kaczynski PhD in mathematics from the University of

Michigan. Retreated to the Montana foothills and became the

notorious ‘Unabomber.’ Sentenced to life imprisonment, with

no possibility of parole, for murder.

John Maynard Keynes Economist. MA and 12th Wrangler in

mathematics, Cambridge University.

Carole King Prolific pop songwriter of the 1960s, later also

became a singer. Dropped out after one year of a mathematics

degree to develop her musical career.

Emanuel Lasker Chess grandmaster, world chess champion 1894–

1921. Mathematics professor at Heidelberg University.

J. P. Morgan Banking, steel and railroad magnate. He was so good

at mathematics that the faculty of Göttingen University tried to

persuade him to become a professional.

Larry Niven Author of Ringworld and numerous other science

fiction bestsellers. Majored in mathematics.

Alexander Solzhenitsyn Winner of the 1970 Nobel Prize in

literature. Author of The Gulag Archipelago and other influential

literary works. Degree in mathematics and physics from the

University of Rostov.

Bram Stoker Author of Dracula. Mathematics degree from Trinity

College, Dublin.

Leon Trotsky Revolutionary. Studied mathematics at Odessa in

1897. Mathematical career terminated by imprisonment in

Siberia.

Eamon de Valera Prime Minister and later President of the

Republic of Ireland. Taught mathematics at university before

Irish independence.

Carol Vorderman Highly numerate co-presenter of television
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series Countdown. Actually studied Engineering, so strictly

speaking does not belong in this list.

Virginia Wade Tennis player, winner of the 1977 Wimbledon

ladies’ singles title. Degree in mathematics and physics from

Sussex University.

Ludwig Wittgenstein Philosopher. Studied mathematical logic

with Bertrand Russell.

Sir ChristopherWren Architect, in particular of St Paul’s Cathedral.

Science and mathematics at Wadham College, Oxford.

A Puzzling Dissection

The area can’t change when the pieces are reassembled in a different

way. When we form the rectangle, the pieces don’t quite fit, and a

long, thin parallelogram is missing – I’ve exaggerated the effect to

show you what I mean.

Why the area isn’t 65.

In fact, if we calculate the slopes of the slanting lines, the top-left

line has a slope of 2/5 = 0.4 and the top-right line has a slope of 3/8 =

0.375. These are different, and the first is slightly larger, so the top-

left line is slightly steeper than the top-right one. In particular, they

are not two pieces of the same straight line.

The key lengths in this puzzle are 5, 8 and 13 – consecutive

Fibonacci numbers (page 98). You can create a similar puzzle using

other sets of consecutive Fibonacci numbers.

Nothing Up My Sleeve . . .

The topological point is that because your jacket has holes,* the

string is not actually linked to your body and the jacket. It just looks

* Armholes, not moth holes.
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that way. To see that the string is not linked to your body or the

jacket, imagine shrinking your body down to the size of a walnut, so

that it slides down your sleeve and into your pocket. Now you can

obviously pull the loop away, because your wrist is no longer

blocking the gap between sleeve and pocket. However, this method is

impractical, so we need a substitute.

Here’s how.

Begin by pulling the end of the loop up the outside of your arm

inside the jacket sleeve, as shown by the arrow in the diagram on the

left. Pull out a loop at the top and draw it over your head to reach the

position shown in the right-hand diagram. Then pull the loop down

the outside of the other arm, inside the sleeve, as shown by the arrow

in the right-hand diagram. Pull it over your hand and then back up

through the sleeve. Now take hold of the string where it passes in

front of your head and push it down inside the front of the jacket.

The string pulls through the jacket armholes, and after a few wiggles

it drops down around your ankles and you can step out of it.

Nothing Down My Leg . . .

After the moves that solve the previous problem, the string ends up

looped around your waist, and it is still looped around your arm. So

you now follow a similar sequence of moves again, with the trousers

instead of the jacket: pass a loop down the trouser leg on the side

opposite the pocket with the hand in it, over the foot, back up the

trouser leg – and finally remove the string down the other trouser leg.

All of this is enormously undignified, and thus highly amusing to

spectators. Topology can be fun.
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Two Perpendiculars

Neither Euclidean theorem is wrong. Mine is.

The mistake is the assumption that P and Q are different points.

In fact, P and Q coincide – this follows from Euclid’s two theorems,

and is highly plausible if you draw an accurate picture.

May Husband and Ay . . .

A 15-move
solution.

The smallest number of moves is 15. The path shown, and its

reflection about the diagonal, are the only solutions. (Remember –

each square is visited exactly once; that is, the path cannot cross itself.)

What Day is It?

Today is Saturday. (As I told you right at the start, the conversation

took place yesterday.) Darren’s answers imply that the day of the

conversation is exactly one of Friday, Monday or Thursday. Delia’s

imply that it is Saturday, Sunday or Friday. The only common day is

Friday. So when the conversation took place, it was Friday.

Logical or Not?

The logic is wrong. If the weather is bad, then pigs don’t fly. As a

consequence, we don’t know whether they have wings. So we don’t

know whether to carry an umbrella.

It may seem strange that a deduction can be illogical when – as
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here – the conclusion is entirely sensible. Actually, this is very

common. For example:

2þ 2 ¼ 22 ¼ 262 ¼ 4

is nonsense as far as logic goes, but it gives the right answer. All

mathematicians know that you can give false proofs of correct

statements. What you can’t do – if mathematics is logically

consistent, as we fervently hope – is give correct proofs of false

statements.

A Question of Breeding

We are told that Catt breeds pigs.

Hamster does not breed pigs, hamsters, dogs or zebras. So he

breeds cats.

Now, Dogge breeds either hamsters or zebras; Pigge breeds dogs

hamsters or zebras; Zebra breeds either dogs or hamsters. Since the

namesake of Zebra’s animals breeds hamsters, Zebra must breed dogs.

Therefore Dogge breeds hamsters, so Pigge breeds zebras.

Fair Shares

Here’s Steinhaus’s method. Let the three people be Arthur, Belinda

and Charlie.

(1) Arthur cuts the cake into three pieces (which he thinks are all

fair, hence subjectively equal).

(2) Belinda must either

. pass (if she thinks that at least two pieces are fair) or

. label two pieces (which she thinks are unfair) as being

‘bad’.

(3) If Belinda passed, then Charlie chooses a piece (which he

thinks is fair). Then Belinda chooses a piece (which she thinks is

fair). Finally, Arthur takes the last piece.

(4) If Belinda labelled two pieces as ‘bad’, then Charlie is offered

the same options as Belinda – pass, or label two pieces ‘bad’. He

takes no notice of Belinda’s labels.
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(5) If Charlie did nothing in step 4, then the players choose

pieces in the order Belinda, Charlie, Arthur (using the same

strategy as in step 3.)

(6) Otherwise, both Belinda and Charlie have labelled two pieces

as ‘bad’. There must be at least one piece that they both consider

‘bad’. Arthur takes that one. (He thinks that all the pieces are fair,

so he can’t complain.)

(7) The other two pieces are reassembled into a heap. (Charlie

and Belinda both think that the result is at least two-thirds of the

cake.) Now Charlie and Belinda play I-cut-you-choose on the

heap, to share what’s left between themselves (thereby getting

what they each judge to be a fair share).

The Sixth Deadly Sin

In the early 1960s John Selfridge and John Horton Conway

independently found an envy-free method of cake division for three

players. It goes like this:

(1) Arthur cuts the cake into three pieces, which he considers to

be ‘fair’ – of equal value to him.

(2) Belinda must either

. pass (if she thinks that two or more pieces are tied for

largest) or

. trim (the largest) piece (to make the two the same). Any

trimmings are called leftovers and set aside.

(3) Charlie, Belinda and Arthur, in that order, choose a piece

(one they think is largest or equal largest). If Belinda did not pass

in step 2, she must choose the trimmed piece unless Charlie

chose it first.

At this stage, the part of the cake other than the leftovers has been

divided into three pieces in an envy-free manner—a ‘partial envy-free

allocation’.

(4) If Belinda passed at step 2, there are no leftovers and we are
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done. If not, either Belinda or Charlie took the trimmed piece.

Call this person the ‘non-cutter’, and the other one of the two

the ‘cutter’. The cutter divides the leftovers into three pieces

(that he/she considers equal).

Arthur has an ‘irrevocable advantage’ over the non-cutter, in the

following sense. The non-cutter received the trimmed piece, and

even if he/she gets all the leftovers, Arthur still thinks that he/she has

no more than a fair share, because he thought that the original pieces

were all fair. So however the leftovers are now divided, Arthur will not

envy the non-cutter.

(5) The three pieces of leftovers are chosen by the players in the

order non-cutter, Arthur, cutter. (Each chooses the largest piece,

or one of the equal largest, among those available.)

The non-cutter chooses from the leftovers first, so has no reason to be

envious. Arthur does not envy the non-cutter because of his

irrevocable advantage; he does not envy the cutter because he

chooses before he/she does. The cutter can’t envy anybody since he/

she was the one who divided the leftovers.

Recently, Steven Brams, Alan Taylor and others have found very

complicated envy-free methods for any number of people.

When it comes to sharing cakes, avoiding the second deadly sin*

is more tricky, in my experience.

Weird Arithmetic

The result is correct, though as teacher said, you should cancel 9 from

the top and the bottom to simplify it to 2
5. But Henry’s presumed

method leaves a lot to be desired.

For instance,

3

4
6

8

5
¼ 38

45

is wrong.

* Gluttony.
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So when does his method work? An easy way to find one more

solution is to turn Henry’s upside down:

4

1
6

5

8
¼ 45

18

But there are other solutions. With the stated limits on the number of

digits, we are trying to solve the equation

a

b
6

c

d
¼ 10aþ c

10bþ d

which boils down to

acð10bþ dÞ ¼ bdð10aþ cÞ
where a, b, c and d can each be any digit from 1 to 9 inclusive.

There are 81 trivial solutions where a ¼ b and c ¼ d. Aside from

these, there are 14 solutions, where (a, b, c, d) ¼ (1, 2, 5, 4), (1, 4, 8, 5),

(1, 6, 4, 3), (1, 6, 6, 4), (1, 9, 9, 5), (2, 1, 4, 5), (2, 6, 6, 5), (4, 1, 5, 8),

(4, 9, 9, 8), (6, 1, 3, 4), (6, 1, 4, 6), (6, 2, 5, 6), (9, 1, 5, 9) and (9, 4, 8, 9).

These form seven pairs (a, b, c, d) and (b, a, d, c), corresponding to

turning the fractions upside down.

How Deep is the Well?

The depth of the well is

s ¼ 1
2 gt

2 ¼ 1
2 10ð6Þ2 ¼ 180metres ¼ 590 feet

which agrees very well with what the Time Team measured (about

550 feet) when you take into account the difficulty of timing the fall

by hand. A more accurate figure for g is 9:8ms�2, leading to a depth of

176 metres or 577 feet. Presumably the exact time was slightly less

than 6 seconds.

Yes, the well really was that deep. How did they dig it, so long

ago? The mind boggles.

McMahon’s Squares

The 24 tiles can be assembled as shown. There are 17 other solutions,

plus rotations and reflections.
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One of the 18 basically
different solutions.

One feature of the tiles helps us work out how to assemble them.

Choose a border colour, say grey. There are four tiles that have two

blue triangles opposite each other and no other blue triangles. Their

remaining triangles are grey/grey, black/black, white/white and

black/white. The only way to fit these tiles in is to stack four of them

together across the narrow width of the rectangle:

The four tiles like the left-hand
one have to stack together.
The white triangles can be any
combination of black and white.

There are still lots of ways to proceed, but this observation helps

to restrict the possibilities. There are 18 basically different solutions,

which lead to 216 solutions altogether by swapping colours, rotating

the picture or reflecting it. Note the stack in the third column of the

sample solution above.

Archimedes, You Old Fraud!

Let’s say that Archimedes can exert a force sufficient to lift his own

weight, call it 100kg. The mass of the Earth is about 661024 kg. To

keep the analysis simple, suppose that the pivot is 1 metre from the

Earth. Then the law of the lever tells us that distance from the pivot

to Archimedes is 661022 metres, and his lever is 1þ 661022 metres

long – about 1.6 million light years, or about two-thirds of the way to
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the Andromeda Galaxy. If Archimedes now moves his end of the

lever one metre, the Earth moves 1=ð661022Þ ¼ 1:66610�23 metres.

Now, a proton has a diameter of 10�15 metres—

Yes, but it still moves, dammit!

True. But suppose that instead of using this huge and improbable

apparatus, Archimedes stands on the surface of the Earth and jumps.

For every metre he goes up, the Earth moves 1:66610�23 metres down

(action/reaction). Jumping has exactly the same effect as his

hypothetical lever. So the place to stand is on the Earth – but you

don’t stand still.

The Missing Symbol

Well, the symbols þ;�;6; and7 don’t work, because 4þ 5 and 465

are too big, and 4� 5 and 475 are too small. Neither does the square

root sign
p
, because 4 5

p ¼ 8:94 and that’s too big as well.

Give up? How about the decimal point, 4.5?

Where There’s a Wall, There’s a Way

How to make
the wall.

Rotation and reflection yield three other solutions. The compo-

nent shapes are called tetrahexes.

Connecting Utilities

No, you can’t. As stated – and without ‘cooking’ the puzzle by, say,

working on a surface that isn’t a plane, passing cables through a

house, whatever – the puzzle has no solution.
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A cheat that works by
passing a cable
through a house.

If you experiment, you’ll soon become convinced that it’s

impossible – but mathematicians require proof. To find one, we first

connect things up without worrying about crossings, like this:

Can this be redrawn without
crossings?

While we’re at it, I’ve replaced the buildings by dots.

Now, suppose that we could redraw this picture, keeping all the

connections at the dots, to eliminate the crossings. Then the lines

would form a kind of map in the plane. This map would have E ¼ 9

edges (the nine connections) and V ¼ 6 vertices (the six dots). Euler’s

formula for maps (page 177) tells us that if F is the number of faces,

then

F � Eþ V ¼ 2

so F � 9þ 6 ¼ 2 and F ¼ 5. One of these faces is infinitely large and

forms the outside of the whole diagram.

Now we count the edges in another way. Each face has a

boundary formed by a loop of edges. You can check that the possible

loops in the diagram contain either 4 or 6 distinct edges, nothing
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else. So there are six possibilities for the number of edges in the five

faces:

4 4 4 4 4
4 4 4 4 6
4 4 4 6 6
4 4 6 6 6
4 6 6 6 6
6 6 6 6 6

which respectively total 20, 22, 24, 26, 28 and 30. But every edge

forms the border between two faces, so the number of edges has to be

half of one of these numbers: 10, 11, 12, 13, 14 or 15.

However, we already know that there should be 9 faces. This is a

contradiction, so we can’t redraw the diagram to have no crossings.

People often claim that ‘You can’t prove a negative.’ In

mathematics, you most certainly can.

Don’t Get the Goat

No, there isn’t. The contestant doubles their chance of success by

changing their mind. But this is true only under the stated

assumptions. For example, suppose that the host (who knows where

the car is, remember) offers the contestant the opportunity to change

their mind only when they have correctly chosen the door with the

car behind it. In this extreme case, they always lose if they change

their mind. At the other extreme, if he offers the contestant the

opportunity to change their mind only when they have chosen a

door with a goat behind it, they always win.

Fine – but what if my original assumptions are valid. The fifty–

fifty argument then looks convincing, but it’s wrong. The reason is

that the host’s procedure does not make the odds fifty–fifty.

When the contestant makes their initial choice, the probability

that they have the right door is one in three. So on average and in the

long run, the car is behind that particular door one time in three.

Nothing that happens subsequently can change that. (Unless the

television people surreptitiously move the prizes . . . OK, let’s assume

that doesn’t happen either.)

After a goat is revealed, the contestant is left with two doors. The

car must be behind one of them (the host never reveals the car). One
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time in three that door is the one that the contestant has chosen. The

other two times out of three, it must be behind the other door. So, if

you don’t change your mind, you win the car one time in three. If

you do, you win it two times in three – twice the chance.

The trouble with such reasoning is that unless you’ve spent a lot

of time learning probability theory, it’s not always clear what works

and what doesn’t. You can experiment using dice to decide where the

car goes: 1 or 2 puts it behind the first door, 3 or 4 behind the second,

5 or 6 behind the third, say. If you try this twenty or thirty times, it

soon becomes clear that changing your mind really does improve the

chance of success. I once got an

e-mail from some people who had been arguing about this problem

in the pub, until one of them got out his laptop and programmed it

to simulate a million attempts. ‘Don’t change your mind’ succeeded

on roughly 333,300 occasions. ‘Do change your mind’ succeeded on

the remaining 666,700 occasions. It’s fascinating that we live in a

world where you can do this simulation in a few minutes in a pub.

Nearly all of which is taken up writing the computer program – the

actual sums take less than a second.

Still not convinced? Sometimes people see the light when the

problem is taken to extremes. Take a normal pack of 52 playing cards,

held face down. Ask a friend to pull a card from the pack, without

looking at it, and lay it on the table. They win if that card is the ace of

spades (car) and lose otherwise (goat). So now we have one car and 51

goats, behind 52 doors (cards). But you now pick up the remaining 51

cards, holding them so that you can see their faces but your friend

can’t. Now you discard 50 of those cards, none being the ace of

spades. One card remains in your hand; one is on the table. Is it really

true that each of these two cards has a fifty–fifty chance of being the

ace of spades? So why were you so careful to hang on to that

particular card out of the 51 you started with? Clearly you have a big

advantage over your friend. They got to choose one card, without

seeing its face. You had a choice of 51 cards, and you did see their

faces. They have one chance in 52 of being right; you have 51

chances. This is a fair game? Pull the other one!
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All Triangles are Isosceles

The mistake is the innocent assertion that X is inside the triangle. If

you draw the picture accurately, it’s not. And it turns out that exactly

one of the points D and E is outside the triangle, too. In this particular

case, D is not between A and C. But the other point is ‘inside’ the

triangle—well, on its edge, but not outside it. Here E lies between B

and C. This diagram makes it clear what I mean:

The correct picture.

Now the argument collapses. We still find that CE ¼ CD and DA

¼ EB (steps 5 and 9). But in step 10, CA ¼ CD�DA, not CDþDA.

However, CB is still CE þ EB. So we can’t conclude that lines CA and

CB are equal.

Fallacies like this one explain why mathematicians are so

obsessive about hidden logical assumptions in proofs.

Square Year

We are looking for squares either side of 2001. A little experiment

reveals that 442 ¼ 1936, and 452 ¼ 2025. With these figures, Betty’s

father was born in 1936� 44 ¼ 1892 (so he died in 1992), and Alfie was

born in 2025� 45 ¼ 1980.

To rule out any other answers: the previous possible date for

Betty’s father would be 432 � 43 ¼ 1806, so he would have died in

1906, making Betty well past retirement age. The next possible date

for Alfie would be 462 � 46 ¼ 2070, so he wouldn’t get born in 2001.
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Infinite Wealth

Whatever amount you win, it will be finite (unless the game goes on

for ever, with you always tossing tails, in which case you win an

infinite amount of cash, but you have to wait infinitely long to get

it). So it’s silly to pay an infinite entry fee. The correct deduction is

that whatever finite entry fee you pay, your expected winnings are

bigger. Your chance of a big win is of course very small, but the win is

so huge that it compensates you for the tiny chance of success.

But that still seems silly, and this is where the mathematicians of

the time started scratching their heads (and very likely their tails too,

though we don’t mention such things in polite company). The main

source of trouble is that the expected winnings form a divergent series

– one with no well-defined sum – which may not make a great deal of

sense.

As a practical matter, the sums involved are limited by two

features that the simple mathematical model fails to take into

account: the largest amount that the bank can actually pay, and the

length of time available to play the game – at most one human

lifetime. If the bank has only £220 available, for instance, which is

£1,048,576, then you are justified in risking £20. If the bank has £250

available, which is £1,125,899,906,842,624 – a little over a quad-

rillion pounds, which exceeds the annual Gross Global Product, then

you are justified in risking £50.

There is a more philosophical point: how sensible the long-term

average winnings (expectation) actually is when the ‘long term’ is far

longer than any player can actually play for. If you are playing

against a bank with £250 in its coffers, it will typically take you 250

attempts to make the big win that justifies you spending £50, let

alone a much larger amount. Human decisions about risk are subtler

than the mindless computation of long-term expectations, and the

subtleties are important exactly when the gain (or loss) is very big but

its probability is very small.

A related point is the relevance of long-term averages over

numerous trials, if in practice you only get to play once, or just a few

times. Then you have an extraordinarily small chance of a big win,

and the pragmatic decision is not to throw money at something so

unlikely.
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On the other hand, in cases where the expectation converges to a

finite sum, it may make more sense. Suppose that you win £n if the

first toss of a head is on the nth throw. Now the expectation is

16
1

2
þ 26

1

22
þ 36

1

23
þ 46

1

24
þ . . .

which converges to 2. So here you should pay £2 to break even,

which seems fair enough.

What Shape is a Rainbow?

The arcs are parts of circles. For a given colour, the arc concerned is very

thin.All thecircles involvedhavethesamecentre–whichisoftenbelow

thehorizon. The interestingquestion is –why?The answer turns out to

be distinctly complicated, though very elegant. Teacher was right to

direct our attention to the colours, though shedidmiss anopportunity

to do some really neat geometry.

Consider light of a single wavelength (colour), and look at a

raindrop in cross-section. Raindrops are spheres, so in section we get

a circle. A ray of light from the Sun hits the front of the drop, is

refracted (bent through an angle) by the water, reflects off the back of

the drop, and is refracted a second time as it leaves the drop and

heads back roughly the way it came.

(Left) The path of one ray. (Right) Many rays.

That’s what happens to one ray, but in reality there are lots of

them. Rays that are very close together usually hit the same drop, but

turn through slightly different angles. But there is a focusing effect,

and most of the light comes back out along a single ‘critical

direction’. Bearing in mind the spherical geometry of the drop, the
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end result is that effectively each drop emits a cone of light of the

chosen colour. The axis of the cone joins the drop to the Sun. The

vertex angle of the cone is about 428, for a raindrop, but it depends

on the colour of the light.

When an observer looks at the sky, in the direction of the rain,

she observes light only from those drops whose cones meet her eye. A

little geometry shows that these drops themselves lie on a cone,

whose tip is at her eye, and whose axis is the line joining her eye to

the Sun. Again, the vertex angle is about 428, depending on the

colour of the light.

The eye receives a cone of light.

If you place a cone to your eye and sight along it, what you see is

the edge of its circular base. More accurately, the directions of the

incoming light are perceived as if the light were being emitted by the

circular base. So the upshot is that the eye ‘sees’ a circular arc. The arc

is not up there in the sky: it is an illusion, caused by the directions of

the incoming light rays.

Usually, the eye sees only part of this circular arc. If the Sun is

high in the sky, most of the arc is below the horizon. If the Sun is low,

the eye sees almost a semicircle. From an aircraft a complete circle

can sometimes be seen. If the rain is nearby, the arc may appear to be

in front of other parts of the landscape. The arc is often partial – you

see the returning light only when there’s rain in that direction.

Because different colours of light lead to different vertex angles

for the cone, each colour appears on a slightly different arc, but they

all have the same centre. So we see ‘parallel’ arcs of colours.

Sometimes you can see a second rainbow, outside the first. This is
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formed in a similar way, but the light bounces more times before

coming back out of the drop. The vertex angle of the cone is

different, and the colours are in reverse order. The sky is brighter

inside the main rainbow, very dark between this and the ‘secondary’

rainbow, and medium-dark outside that. Again, all this can be

explained in terms of the geometry of the light rays. René Descartes

did that in 1637.

A really informative website is en.wikipedia.org/wiki/Rainbow

Alien Abduction

Each alien is going after the pig that initially is nearest to it. If they

chase the other pig, they will soon catch it.

Why? The way to catch a pig is to drive it into a corner. If the

position looks like the next picture, and it is the pig’s turn to move, it

will be abducted. However, if it is the alien’s turn to move, the pig can

escape.

How to catch your pig
– provided the pig has to move.

Which of these happens depends on the parity (odd or even) of

the distance (in moves) from alien to pig. If the pig is an even number

of moves away – as it is if each alien goes for the pig it is initially

facing – then the pig always escapes. If it is odd – as it is if the aliens

switch pigs – then the pig can be driven into a corner and abducted.

Disproof of the Riemann Hypothesis

The argument is logically correct. However, it doesn’t disprove the

Riemann Hypothesis! The information given is contradictory: it

implies that an elephant has won Mastermind, and also that it has

not. We can now prove the Riemann Hypothesis false by contra-

diction:
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(1) Assume, on the contrary, that the Riemann Hypothesis is

true.

(2) Then an elephant has won Mastermind.

(3) But an elephant has not won Mastermind.

(4) This is a contradiction. So our assumption that the Riemann

Hypothesis is true is wrong.

(5) Therefore the Riemann Hypothesis is false.

The same argument proves that the Riemann Hypothesis is true, of

course.

Murder in the Park

The two possible topological types of path.

Topologically speaking, there are just two cases to consider.

Either the butler went to the north of Y on his way to X (left-hand

diagram) or he went to the south (right-hand diagram). The

gamekeeper must then have gone to the south (respectively north) of

X on his way to Y.

The tracks of the youth and the grocer’s wife must then be as

shown, perhaps with additional wiggles. In the first case, the grocer’s

wife’s path from C to F cuts off the youth’s path from the part of the

park that contains the body. In fact, only she and the butler could

have approached the place where Hastings’s body lay. The same is

true in the second case. Since the butler has a confirmed alibi, the

murderer must have been the grocer’s wife.
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The Cube of Cheese

The corners of the hexagon lie on various midpoints of sides of the

cube, like this:

Hexagonal slice of a cube.

Drawing an Ellipse – and More?

The pencil draws arcs of various ellipses.

When the pencil is in the position shown on the left, the length of

string ACþCB is constant, so the pencil moves as if you had looped a

shorter string round A and B. Therefore it draws an arc of an ellipse

with foci A and B. When it moves to a position like the one on the

right, it draws an arc of an ellipse with foci A and C. The complete

curve therefore consists of six arcs of ellipses, joined together. Since

basically this isn’t new, mathematicians aren’t (terribly) interested.
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The Milk Crate Problem

The milkman is correct for 1, 4, 9, 16, 25 and 36 bottles, but wrong

for 49 and any larger square number.

If you think about this the right way, it’s obvious that when the

number of bottles gets sufficiently large, the square lattice packing

can’t possibly be the best. (What is the best is horribly difficult to

work out, and nobody knows.) The square lattice must fail for a large

number of bottles, because a hexagonal lattice packs bottles more

closely than a square one. When there aren’t too many bottles, ‘edge

effects’ near the walls of the crate stop you exploiting this fact to

make the crate smaller, but as the numbers go up the edge effects

become negligible.

It so happens that the break-even point is close to 49 bottles. And

it has been proved that 49 bottles of unit diameter can fit inside a

square whose side is very slightly less than 7 units. The difference is

too small to be seen by the naked eye, but you can easily see big

regions of hexagonally packed circles.

(Left) 49 unit bottles in a 767 square. (Right) How to fit the same
bottles into a slightly smaller square.

Incidentally, this example shows that a rigid packing – one in

which no single circle can move – need not be the closest packing

possible. The square lattice is rigid for any square number of bottles

inside a tightly fitting square crate. Or, indeed, on the infinite plane.

Road Network

The shortest road network introduces two new junctions and makes

the roads meet there at exactly 1208 to each other. The same layout
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rotated by 908 is the only other option. The total length here is

100ð1þ 3
p Þ ¼ 273km, roughly:

The shortest network.

Tautoverbs

. No news is no news. (Experts consider this the smallest but

most perfectly formed tautoverb, a kind of tautohaiku.)

. The bigger they are, the bigger they are.

. Nothing ventured, nothing lost.

. Too many cooks cook too much.

. You cannot have your cake and eat it too, unless you do them

in that order. What’s difficult is to eat your cake and have it

too.

. A watched pot never boils over. (Unless it’s custard.) The time

taken for a liquid to boil is not influenced by the presence of

an observer, except in certain esoteric forms of quantum field

theory. It merely seems longer for psychological reasons. Do

not be deceived.

. If pigs had wings, the laws of aerodynamics would still stop

them getting off the ground. I mean, let’s be sensible. The

porcithopter is not technologically feasible.

Scrabble Oddity

TWELVE ¼ 1þ 4þ 1þ 1þ 4þ 1
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Dragon Curve

Dragon curves can be made by repeatedly folding a strip of paper in

half – always folding the same way – and then opening it out to make

all folds into right angles.

Making dragon curves by paper-folding.

These curves determine a fractal (page 189). In fact, the infinite

limit is a space-filling curve (page 83), but the region it fills has a

complicated, dragon-like shape. The sequence of right (R) and left (L)

turns in the curve goes like this:

Step 1 R

Step 2 R R L

Step 3 R R L R R L L

Step 4 R R L R R L L R R R L L R L L

In fact, there is a simple pattern: each sequence is formed from the

previous one by placing an extra R at the end, followed by the reverse

of the previous sequence with R’s and L’s swapped. I’ve marked the

extra R in the middle in bold.

The dragon curve was discovered by John Heighway, Bruce Banks

and William Harter – all physicists at NASA – and was mentioned in

Martin Gardner’s Mathematical Games’ column in Scientific American

in 1967. It has lots of intriguing features – see en.wikipedia.org/wiki/

Dragon_curve

Counterflip

Assume that there is an odd number of black counters—so in

particular, there exists at least one of them. As play progresses,

counters that are removed create gaps, breaking the row of counters

into connected pieces, which I’ll call chains. We start with one chain.
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I claim that any chain with an odd number of black counters can

be removed. Here’s a method that always works. (The sample game

doesn’t always follow it, so other methods work too.)

Starting from one end of the chain, find the first black counter. I

claim that if you flip that counter, then there are three possibilities:

(1) The chain originally consisted of one isolated black counter,

and when you flip it it is removed, with no effect on any other

counters.

(2) You now have a single shorter chain having an odd number

of black counters.

(3) You now have two shorter chains, each having an odd

number of black counters.

If this claim is true, then you can repeat the same procedure on the

shorter chains. The number of chains may grow, but they get shorter

at each step. Eventually they all become so short that we reach case 1

and they can be removed entirely.

The claim is proved by seeing what happens in three cases of a

single chain, which exhaust the possibilities:

(1) The chain concerned consists of a single black counter. It has

no neighbours, so when it is flipped it disappears.

(2) The chain has a black counter at one end. Flipping the end

counter results in a shorter chain which has an odd number of

black counters.

Grey counters may be either
black or white. The black
counter on the end disappears,
and its neighbour (here shown
white) changes colour. The
overall change in the number of
black counters is either 0 or 2,
so an odd number of black
counters remains.

(3) The chain has white counters at both ends. Flipping the first

black counter from one end (it doesn’t matter which) results in
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two shorter chains. One has a single black counter (which is odd)

and the other has an odd number of black counters.

The first black counter
(from the left)
disappears, and its
neighbours (one white,
one grey – i.e. black or
white) change colour.
Two chains are created;
one has one black
counter, the other has
an odd number of black
counters.

It does matter which black counter you flip. For instance, if the

chain has at least four counters, with three black counters next to one

another and the rest white, then it is a mistake to flip the middle

black counter. If you do, you get at least one chain containing no

black counters at all, so this chain cannot be removed.

Oops . . .

To complete the analysis, here’s why the puzzle can’t be solved if

the initial number of black counters is even:

(1) If there are no black counters (zero is even!) you can’t get

started.

(2) If the initial number of black counters is even (and non-zero),

then whichever black counter you remove, at least one shorter

chain is created that also has an even number of black counters.

Repeating this process eventually leads to a chain with no black

counters but at least one white one. This chain cannot be

removed since there is no place to start.

Spherical Sliced Bread

All slices have exactly the same amount of crust.

At first sight this seems unlikely, but slices near the top and

bottom are more slanted than those near the middle, so they have
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more crust than you might think. It turns out that the slope exactly

compensates for the smaller size of the slices.

In fact, the great Greek mathematician Archimedes discovered

that the surface area of a slice of a sphere is equal to that of the

corresponding slice of a cylinder into which the sphere fits. It is

obvious that parallel slices of a cylindrical loaf, of equal thickness, all

have the same amount of crust . . . since they are all the same shape

and size.

The surface area of the spherical band (pale blue) is the same as
that of the corresponding band on a tightly fitting cylinder.

Mathematical Theology

I asked you to start from 2þ 2 ¼ 5 and prove that 1 ¼ 1 and also that

1 ¼ 42. There are lots of valid answers (infinitely many, in fact). Here

are two that work:

. Since 2þ 2 ¼ 4, we deduce that 4 ¼ 5. Double both sides to get

8 ¼ 10. Subtract 9 from each side to get �1 ¼ 1. Square both

sides to get 1 ¼ 1.

. Since 2þ 2 ¼ 4, we deduce that 4 ¼ 5. Subtract 4 from each

side to get 0 ¼ 1. Multiply both sides by 41 to get 0 ¼ 41. Add

1 to each side to get 1 ¼ 42.
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